論文の概要: Simulation-based reinforcement learning for real-world autonomous driving
- arxiv url: http://arxiv.org/abs/1911.12905v4
- Date: Wed, 3 Apr 2024 14:35:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 21:09:13.118665
- Title: Simulation-based reinforcement learning for real-world autonomous driving
- Title(参考訳): 実世界自動運転のためのシミュレーションに基づく強化学習
- Authors: Błażej Osiński, Adam Jakubowski, Piotr Miłoś, Paweł Zięcina, Christopher Galias, Silviu Homoceanu, Henryk Michalewski,
- Abstract要約: 実物大の車両を制御する駆動システムを実現するために,シミュレーションにおいて強化学習を用いる。
駆動ポリシは、単一のカメラからのRGBイメージと、それらのセマンティックセグメンテーションを入力として取り込む。
主に合成データを使用し、ラベル付き実世界のデータはセグメンテーションネットワークのトレーニングにのみ現れる。
- 参考スコア(独自算出の注目度): 9.773015744446067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use reinforcement learning in simulation to obtain a driving system controlling a full-size real-world vehicle. The driving policy takes RGB images from a single camera and their semantic segmentation as input. We use mostly synthetic data, with labelled real-world data appearing only in the training of the segmentation network. Using reinforcement learning in simulation and synthetic data is motivated by lowering costs and engineering effort. In real-world experiments we confirm that we achieved successful sim-to-real policy transfer. Based on the extensive evaluation, we analyze how design decisions about perception, control, and training impact the real-world performance.
- Abstract(参考訳): 実物大の車両を制御する駆動システムを実現するために,シミュレーションにおいて強化学習を用いる。
駆動ポリシは、単一のカメラからのRGBイメージと、それらのセマンティックセグメンテーションを入力として取り込む。
主に合成データを使用し、ラベル付き実世界のデータはセグメンテーションネットワークのトレーニングにのみ現れる。
シミュレーションや合成データにおける強化学習の利用は、コスト削減とエンジニアリングの努力によって動機づけられる。
実世界の実験では、シモン・トゥ・リアル・ポリシー・トランスファーに成功したことを確認した。
広範な評価に基づいて、認識、制御、トレーニングに関する設計決定が現実世界のパフォーマンスにどのように影響するかを分析する。
関連論文リスト
- Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
我々は、オフロード自動運転の視覚的現実的ギャップを横断するRCANを再想像するSim2Segを紹介する。
これは、ランダム化されたシミュレーション画像をシミュレートされたセグメンテーションと深さマップに変換する学習によって行われる。
これにより、シミュレーションでエンドツーエンドのRLポリシーをトレーニングし、現実世界に直接デプロイできます。
論文 参考訳(メタデータ) (2022-10-25T17:50:36Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
我々は人型ロボットの手で頑健な操作を行える政策を訓練する。
本研究は,各種ハードウェアおよびシミュレータのデクスタラス操作におけるsim-to-real転送の可能性を再確認する。
論文 参考訳(メタデータ) (2022-10-25T01:51:36Z) - Data generation using simulation technology to improve perception
mechanism of autonomous vehicles [0.0]
実世界から収集したデータと模擬世界から生成されたデータを組み合わせることで、認識システムを訓練する効果を実証する。
また,人間の学習体験をエミュレートすることを目的とした多段階深層学習知覚フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-01T03:42:33Z) - Practical Imitation Learning in the Real World via Task Consistency Loss [18.827979446629296]
本稿では,機能レベルと行動予測レベルの両方において,シミュレートと実際のアライメントを促進する自己監督的損失を提案する。
我々は、シミュレートとリアルで遠隔操作されたデモンストレーションを16.2時間しか使っていない10のシーンで80%の成功を達成した。
論文 参考訳(メタデータ) (2022-02-03T21:43:06Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Learning to Simulate on Sparse Trajectory Data [26.718807213824853]
本稿では,実世界のスパースデータから運転行動をシミュレートする学習問題に対処するための新しいフレームワーク imingail を提案する。
私たちの知る限りでは、行動学習問題に対するデータ疎結合問題に最初に取り組みます。
論文 参考訳(メタデータ) (2021-03-22T13:42:11Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。