Classical Statistical simulation of Quantum Field Theory
- URL: http://arxiv.org/abs/1912.01648v3
- Date: Thu, 25 Jan 2024 08:04:48 GMT
- Title: Classical Statistical simulation of Quantum Field Theory
- Authors: Takayuki Hirayama
- Abstract summary: We propose a procedure of computing the n-point function in perturbation theory of the quantum field theory as the average over the complex Gaussian noises in a classical theory.
The complex Gaussian noises are the sources for the creation and annihilation of particles and the energy of the resultant configuration is the same as the zero point energy of the corresponding quantum field theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a procedure of computing the n-point function in perturbation
theory of the quantum field theory as the average over the complex Gaussian
noises in a classical theory. The complex Gaussian noises are the sources for
the creation and annihilation of particles and the energy of the resultant
configuration is the same as the zero point energy of the corresponding quantum
field theory.
Related papers
- Universal Euler-Cartan Circuits for Quantum Field Theories [0.0]
A hybrid quantum-classical algorithm is presented for the computation of non-perturbative characteristics of quantum field theories.
The algorithm relies on a universal parametrized quantum circuit ansatz based on Euler and Cartan's decompositions of single and two-qubit operators.
arXiv Detail & Related papers (2024-07-31T01:59:09Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum Simulation of Bound State Scattering [0.0]
We present a strategy to excite wavepackets of the interacting theory directly from the vacuum of the interacting theory.
This is the first step towards digital quantum simulation of scattering of bound states.
arXiv Detail & Related papers (2023-05-12T18:00:01Z) - Quantum Fibrations: quantum computation on an arbitrary topological
space [0.0]
We extend the theory of quantum computation on a graph to a theory of computation on an arbitrary topological space.
We use von Neumann algebras to do this.
arXiv Detail & Related papers (2022-10-11T04:23:20Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum Simulation of Conformal Field Theory [77.34726150561087]
We describe a quantum algorithm to simulate the dynamics of conformal field theories.
A full analysis of the approximation errors suggests near-term applicability.
arXiv Detail & Related papers (2021-09-29T06:44:33Z) - Towards a variational Jordan-Lee-Preskill quantum algorithm [9.548089725859297]
We formulate the theory of (time-dependent) variational quantum simulation, explicitly designed for quantum simulation of quantum field theory.
We develop hybrid quantum-classical algorithms for crucial ingredients in particle scattering experiments, including encoding, state preparation, and time evolution.
arXiv Detail & Related papers (2021-09-12T16:04:44Z) - Computation in a general physical setting [0.0]
This paper reviews and extends some results on the computational ability of quantum theory.
It provides a refined version of the conjecture that a quantum computer can simulate the computation in any theory.
It ends by describing an important relation between this conjecture and delegated computation, similar to the relation between quantum non-locality and device-independent cryptography.
arXiv Detail & Related papers (2021-08-25T20:00:20Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.