論文の概要: Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System
- arxiv url: http://arxiv.org/abs/1912.02182v2
- Date: Thu, 12 Dec 2024 09:55:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-15 16:05:36.985202
- Title: Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System
- Title(参考訳): HERMESによるより良い社会危機データを目指して:EmeRgency Management Systemのためのハイブリッドセンシング
- Authors: Marco Avvenuti, Salvatore Bellomo, Stefano Cresci, Leonardo Nizzoli, Maurizio Tesconi,
- Abstract要約: HERMESは,OSN利用者が災害の余波で自発的に開示した情報を豊かにするためのシステムである。
HERMESは、現実世界の緊急事態で評価され、利用可能な被害情報の量を増やすことが実証された。
- 参考スコア(独自算出の注目度): 0.6918368994425961
- License:
- Abstract: People involved in mass emergencies increasingly publish information-rich contents in online social networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7x) and the variety (up to 18x) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity.
- Abstract(参考訳): 集団緊急事態に関わる人々は、オンラインソーシャルネットワーク(OSN)に情報に富むコンテンツを公開し、人間のセンサーの分散した回復力のあるネットワークとして機能する。
本研究は,OSN利用者が災害の余波において自然に開示した情報を充実させるシステムであるHERMESについて述べる。
HERMESは、ハイブリッドセンシングと呼ばれる混合データ収集戦略と最先端AI技術を活用する。
HERMESは、現実世界の緊急事態で評価され、次のことが判明した。
一 損害情報の提供額
2 取得した地理的情報の密度(最大7倍)及び品種(最大18倍)
三 地理的範囲(最大30%)及び粒度
関連論文リスト
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
本稿では, 疫学知識を統合し, 性能を高めるための新しい疫学情報ネットワーク(EIN)を提案する。
疫学理論をうわさ検出に適応させるため,各利用者が情報源情報に対する姿勢を付加することが期待されている。
実験結果から,提案したEINは実世界のデータセット上で最先端の手法より優れるだけでなく,樹木の深度にまたがる堅牢性も向上することが示された。
論文 参考訳(メタデータ) (2024-11-20T00:43:32Z) - A Social Context-aware Graph-based Multimodal Attentive Learning Framework for Disaster Content Classification during Emergencies [0.0]
CrisisSpotは、テキストと視覚の複雑な関係をキャプチャする手法である。
IDEAは、データ内の調和とコントラストの両方のパターンをキャプチャして、マルチモーダルインタラクションを強化する。
CrisisSpotは最先端の手法と比較してF1スコアの平均9.45%と5.01%の上昇を達成した。
論文 参考訳(メタデータ) (2024-10-11T13:51:46Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - Detecting and Mitigating Bias in Algorithms Used to Disseminate Information in Social Networks [0.03883607294385062]
影響アルゴリズムは、影響者の集合を特定するために使用される。
これらの手法を用いたシード情報によって情報ギャップが生じることを示す。
インフルエンスと情報エクイティを最大化する多目的アルゴリズムを考案する。
論文 参考訳(メタデータ) (2024-05-21T13:17:57Z) - MIDDAG: Where Does Our News Go? Investigating Information Diffusion via
Community-Level Information Pathways [114.42360191723469]
我々は、新型コロナウイルス関連のニュース記事によって引き起こされるソーシャルメディア上の情報伝達経路を可視化する、直感的でインタラクティブなシステムMIDDAGを提案する。
我々は,ユーザ間のコミュニティを構築し,伝播予測機能を開発し,情報の普及方法の追跡と理解を可能にする。
論文 参考訳(メタデータ) (2023-10-04T02:08:11Z) - ContCommRTD: A Distributed Content-based Misinformation-aware Community
Detection System for Real-Time Disaster Reporting [0.5156484100374059]
本稿では,危険関連事象とその進化について,ほぼリアルタイムに情報を提供する新しい分散システムを提案する。
我々の分散災害報告システムは、世界規模のツイート間の社会的関係を解析する。
フェイクニュースを検知する新たな深層学習モデルを提案する。
論文 参考訳(メタデータ) (2023-01-30T15:28:47Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - A Machine learning approach for rapid disaster response based on
multi-modal data. The case of housing & shelter needs [0.0]
災害に遭った人々の最も直接的なニーズの1つは避難所を見つけることである。
本稿では,マルチモーダルデータの融合と解析を目的とした機械学習ワークフローを提案する。
世界中の200以上の災害に対する19の特徴のデータベースに基づいて、意思決定レベルでの融合アプローチが用いられた。
論文 参考訳(メタデータ) (2021-07-29T18:22:34Z) - Knowledge-Preserving Incremental Social Event Detection via
Heterogeneous GNNs [72.09532817958932]
ソーシャルイベント検出のための知識保存型不均一グラフニューラルネットワーク(KPGNN)を提案する。
KPGNNは複雑なソーシャルメッセージを統一されたソーシャルグラフにモデル化し、データの活用を促進し、知識抽出のためのGNNの表現力を探る。
また、GNNの帰納的学習能力を活用して、イベントを効率的に検出し、これまで見つからなかったデータからその知識を拡張する。
論文 参考訳(メタデータ) (2021-01-21T17:56:57Z) - Improving Community Resiliency and Emergency Response With Artificial
Intelligence [0.05541644538483946]
我々は、ステークホルダーが包括的で関連性があり、信頼できる情報にタイムリーにアクセスできるようにする、多段階の緊急対応ツールを目指しています。
本ツールは, 浸水リスク位置, 道路ネットワーク強度, 浸水マップ, 浸水地や被害インフラを推定するコンピュータビジョンセマンティックセマンティックセマンティックセグメンテーションなど, オープンソースの地理空間データの複数の層を符号化して構成する。
これらのデータレイヤを組み合わせて、緊急時の避難経路の検索や、最初に影響を受けたエリアで最初の応答者のために利用可能な宿泊場所のリストを提供するなど、機械学習アルゴリズムの入力データとして利用する。
論文 参考訳(メタデータ) (2020-05-28T18:05:08Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。