Asymmetric GANs for Image-to-Image Translation
- URL: http://arxiv.org/abs/1912.06931v2
- Date: Fri, 12 Jul 2024 12:34:52 GMT
- Title: Asymmetric GANs for Image-to-Image Translation
- Authors: Hao Tang, Nicu Sebe,
- Abstract summary: Existing models for Generative Adversarial Networks (GANs) learn the mapping from the source domain to the target domain using a cycle-consistency loss.
We propose an AsymmetricGAN model with both translation and reconstruction generators of unequal sizes and different parameter-sharing strategy.
Experiments on both supervised and unsupervised generative tasks with 8 datasets show that AsymmetricGAN achieves superior model capacity and better generation performance.
- Score: 62.49892218126542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing models for unsupervised image translation with Generative Adversarial Networks (GANs) can learn the mapping from the source domain to the target domain using a cycle-consistency loss. However, these methods always adopt a symmetric network architecture to learn both forward and backward cycles. Because of the task complexity and cycle input difference between the source and target domains, the inequality in bidirectional forward-backward cycle translations is significant and the amount of information between two domains is different. In this paper, we analyze the limitation of existing symmetric GANs in asymmetric translation tasks, and propose an AsymmetricGAN model with both translation and reconstruction generators of unequal sizes and different parameter-sharing strategy to adapt to the asymmetric need in both unsupervised and supervised image translation tasks. Moreover, the training stage of existing methods has the common problem of model collapse that degrades the quality of the generated images, thus we explore different optimization losses for better training of AsymmetricGAN, making image translation with higher consistency and better stability. Extensive experiments on both supervised and unsupervised generative tasks with 8 datasets show that AsymmetricGAN achieves superior model capacity and better generation performance compared with existing GANs. To the best of our knowledge, we are the first to investigate the asymmetric GAN structure on both unsupervised and supervised image translation tasks.
Related papers
- I2I-Galip: Unsupervised Medical Image Translation Using Generative Adversarial CLIP [30.506544165999564]
Unpaired image-to-image translation is a challenging task due to the absence of paired examples.
We propose a new image-to-image translation framework named Image-to-Image-Generative-Adversarial-CLIP (I2I-Galip)
arXiv Detail & Related papers (2024-09-19T01:44:50Z) - On the Importance of Asymmetry for Siamese Representation Learning [53.86929387179092]
Siamese networks are conceptually symmetric with two parallel encoders.
We study the importance of asymmetry by explicitly distinguishing the two encoders within the network.
We find the improvements from asymmetric designs generalize well to longer training schedules, multiple other frameworks and newer backbones.
arXiv Detail & Related papers (2022-04-01T17:57:24Z) - ResiDualGAN: Resize-Residual DualGAN for Cross-Domain Remote Sensing
Images Semantic Segmentation [15.177834801688979]
The performance of a semantic segmentation model for remote sensing (RS) images pretrained on an annotated dataset would greatly decrease when testing on another unannotated dataset because of the domain gap.
Adversarial generative methods, e.g., DualGAN, are utilized for unpaired image-to-image translation to minimize the pixel-level domain gap.
In this paper, ResiDualGAN is proposed for RS images translation, where a resizer module is used for addressing the scale discrepancy of RS datasets.
arXiv Detail & Related papers (2022-01-27T13:56:54Z) - Adverse Weather Image Translation with Asymmetric and Uncertainty-aware
GAN [16.80284837186338]
Adverse weather image translation belongs to the unsupervised image-to-image (I2I) translation task.
Geneversarative Adrial Networks (GANs) have achieved notable success in I2I translation.
We propose a novel GAN model, i.e., AU-GAN, which has an asymmetric architecture for adverse domain translation.
arXiv Detail & Related papers (2021-12-08T13:41:24Z) - Unsupervised Image-to-Image Translation via Pre-trained StyleGAN2
Network [73.5062435623908]
We propose a new I2I translation method that generates a new model in the target domain via a series of model transformations.
By feeding the latent vector into the generated model, we can perform I2I translation between the source domain and target domain.
arXiv Detail & Related papers (2020-10-12T13:51:40Z) - StereoGAN: Bridging Synthetic-to-Real Domain Gap by Joint Optimization
of Domain Translation and Stereo Matching [56.95846963856928]
Large-scale synthetic datasets are beneficial to stereo matching but usually introduce known domain bias.
We propose an end-to-end training framework with domain translation and stereo matching networks to tackle this challenge.
arXiv Detail & Related papers (2020-05-05T03:11:38Z) - Group Equivariant Generative Adversarial Networks [7.734726150561089]
In this work, we explicitly incorporate inductive symmetry priors into the network architectures via group-equivariant convolutional networks.
Group-convariants have higher expressive power with fewer samples and lead to better gradient feedback between generator and discriminator.
arXiv Detail & Related papers (2020-05-04T17:38:49Z) - Structured Domain Adaptation with Online Relation Regularization for
Unsupervised Person Re-ID [62.90727103061876]
Unsupervised domain adaptation (UDA) aims at adapting the model trained on a labeled source-domain dataset to an unlabeled target-domain dataset.
We propose an end-to-end structured domain adaptation framework with an online relation-consistency regularization term.
Our proposed framework is shown to achieve state-of-the-art performance on multiple UDA tasks of person re-ID.
arXiv Detail & Related papers (2020-03-14T14:45:18Z) - Augmented Cyclic Consistency Regularization for Unpaired Image-to-Image
Translation [22.51574923085135]
Augmented Cyclic Consistency Regularization (A CCR) is a novel regularization method for unpaired I2I translation.
Our method outperforms the consistency regularized GAN (CR-GAN) in real-world translations.
arXiv Detail & Related papers (2020-02-29T06:20:20Z) - Structured GANs [91.3755431537592]
symmetric GANs are applied to face image synthesis in order to generate novel faces with a varying amount of symmetry.
We also present an unsupervised face rotation capability, which is based on the novel notion of one-shot fine tuning.
arXiv Detail & Related papers (2020-01-15T10:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.