Structured GANs
- URL: http://arxiv.org/abs/2001.05216v1
- Date: Wed, 15 Jan 2020 10:25:39 GMT
- Title: Structured GANs
- Authors: Irad Peleg and Lior Wolf
- Abstract summary: symmetric GANs are applied to face image synthesis in order to generate novel faces with a varying amount of symmetry.
We also present an unsupervised face rotation capability, which is based on the novel notion of one-shot fine tuning.
- Score: 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Generative Adversarial Networks (GANs), in which the symmetric
property of the generated images is controlled. This is obtained through the
generator network's architecture, while the training procedure and the loss
remain the same. The symmetric GANs are applied to face image synthesis in
order to generate novel faces with a varying amount of symmetry. We also
present an unsupervised face rotation capability, which is based on the novel
notion of one-shot fine tuning.
Related papers
- Symmetry Induces Structure and Constraint of Learning [0.0]
We unveil the importance of the loss function symmetries in affecting, if not deciding, the learning behavior of machine learning models.
Common instances of mirror symmetries in deep learning include rescaling, rotation, and permutation symmetry.
We show that the theoretical framework can explain intriguing phenomena, such as the loss of plasticity and various collapse phenomena in neural networks.
arXiv Detail & Related papers (2023-09-29T02:21:31Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Imaging with Equivariant Deep Learning [9.333799633608345]
We review the emerging field of equivariant imaging and show how it can provide improved generalization and new imaging opportunities.
We show the interplay between the acquisition physics and group actions and links to iterative reconstruction, blind compressed sensing and self-supervised learning.
arXiv Detail & Related papers (2022-09-05T02:13:57Z) - Alias-Free Generative Adversarial Networks [48.09216521763342]
generative adversarial networks depend on absolute pixel coordinates in an unhealthy manner.
We trace the root cause to careless signal processing that causes aliasing in the generator network.
Our results pave the way for generative models better suited for video and animation.
arXiv Detail & Related papers (2021-06-23T14:20:01Z) - MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning [90.20563679417567]
This paper introduces MDP homomorphic networks for deep reinforcement learning.
MDP homomorphic networks are neural networks that are equivariant under symmetries in the joint state-action space of an MDP.
We show that such networks converge faster than unstructured networks on CartPole, a grid world and Pong.
arXiv Detail & Related papers (2020-06-30T15:38:37Z) - Group Equivariant Generative Adversarial Networks [7.734726150561089]
In this work, we explicitly incorporate inductive symmetry priors into the network architectures via group-equivariant convolutional networks.
Group-convariants have higher expressive power with fewer samples and lead to better gradient feedback between generator and discriminator.
arXiv Detail & Related papers (2020-05-04T17:38:49Z) - Toward a Controllable Disentanglement Network [22.968760397814993]
This paper addresses two crucial problems of learning disentangled image representations, namely controlling the degree of disentanglement during image editing, and balancing the disentanglement strength and the reconstruction quality.
By exploring the real-valued space of the soft target representation, we are able to synthesize novel images with the designated properties.
arXiv Detail & Related papers (2020-01-22T16:54:07Z) - Asymmetric GANs for Image-to-Image Translation [62.49892218126542]
Existing models for Generative Adversarial Networks (GANs) learn the mapping from the source domain to the target domain using a cycle-consistency loss.
We propose an AsymmetricGAN model with both translation and reconstruction generators of unequal sizes and different parameter-sharing strategy.
Experiments on both supervised and unsupervised generative tasks with 8 datasets show that AsymmetricGAN achieves superior model capacity and better generation performance.
arXiv Detail & Related papers (2019-12-14T21:24:41Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks.
We introduce windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets.
We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts.
arXiv Detail & Related papers (2019-11-14T17:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.