論文の概要: Learning Inverse Depth Regression for Multi-View Stereo with Correlation
Cost Volume
- arxiv url: http://arxiv.org/abs/1912.11746v1
- Date: Thu, 26 Dec 2019 01:40:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-10 08:37:49.608641
- Title: Learning Inverse Depth Regression for Multi-View Stereo with Correlation
Cost Volume
- Title(参考訳): 相関コスト付き多視点ステレオの逆深さ回帰学習
- Authors: Qingshan Xu and Wenbing Tao
- Abstract要約: 深層学習は多視点ステレオ(MVS)の深部推論に有効であることが示されている。
しかし、この領域ではスケーラビリティと正確性は依然として未解決の問題である。
ステレオマッチングにおけるグループワイド相関に着想を得て,軽量なコストボリュームを構築するための平均グループワイド相関類似度尺度を提案する。
- 参考スコア(独自算出の注目度): 32.41293572426403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has shown to be effective for depth inference in multi-view
stereo (MVS). However, the scalability and accuracy still remain an open
problem in this domain. This can be attributed to the memory-consuming cost
volume representation and inappropriate depth inference. Inspired by the
group-wise correlation in stereo matching, we propose an average group-wise
correlation similarity measure to construct a lightweight cost volume. This can
not only reduce the memory consumption but also reduce the computational burden
in the cost volume filtering. Based on our effective cost volume
representation, we propose a cascade 3D U-Net module to regularize the cost
volume to further boost the performance. Unlike the previous methods that treat
multi-view depth inference as a depth regression problem or an inverse depth
classification problem, we recast multi-view depth inference as an inverse
depth regression task. This allows our network to achieve sub-pixel estimation
and be applicable to large-scale scenes. Through extensive experiments on DTU
dataset and Tanks and Temples dataset, we show that our proposed network with
Correlation cost volume and Inverse DEpth Regression (CIDER), achieves
state-of-the-art results, demonstrating its superior performance on scalability
and accuracy.
- Abstract(参考訳): 深層学習は多視点ステレオ(MVS)の深部推論に有効であることが示されている。
しかし、この領域ではスケーラビリティと正確性は依然として未解決の問題である。
これはメモリ消費コストのボリューム表現と不適切な深さ推論に起因する。
ステレオマッチングにおけるグループワイド相関に着想を得て,軽量なコストボリュームを構築するための平均グループワイド相関類似度尺度を提案する。
これにより、メモリ消費を削減できるだけでなく、コストボリュームフィルタリングの計算負担を軽減できる。
実効的なコスト容積表現に基づいて,コスト容積を正規化して性能をさらに向上するカスケード3次元U-Netモジュールを提案する。
多視点深度推論を深度回帰問題や逆深度分類問題として扱う従来の手法とは異なり、多視点深度推論を逆深度回帰問題として再放送する。
これにより,サブピクセル推定が可能となり,大規模シーンに適用できる。
DTUデータセットとタンク・アンド・テンプルデータセットに関する広範な実験を通して、我々の提案する相関コストボリュームと逆深さ回帰(CIDER)によるネットワークが最先端の結果を達成し、スケーラビリティと精度に優れた性能を示すことを示す。
関連論文リスト
- NeRF-Det++: Incorporating Semantic Cues and Perspective-aware Depth
Supervision for Indoor Multi-View 3D Detection [72.0098999512727]
NeRF-Detは、NeRFを用いた屋内マルチビュー3次元検出において、表現学習の強化による優れた性能を実現している。
セマンティックエンハンスメント(セマンティックエンハンスメント)、パースペクティブ・アウェア・サンプリング(パースペクティブ・アウェア・サンプリング)、および順序深度監視を含む3つのソリューションを提案する。
結果として得られたアルゴリズムであるNeRF-Det++は、ScanNetV2とAR KITScenesデータセットで魅力的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-22T11:48:06Z) - AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
本研究では,教師なし深度計算と推定のために,従来不可能であった幾何拡張の幅広い範囲をアンロックする手法を提案する。
これは、出力深さの座標への幾何変換を反転、あるいはアンドウイング(undo''-ing)し、深度マップを元の参照フレームに戻すことで達成される。
論文 参考訳(メタデータ) (2023-10-15T05:15:45Z) - Non-parametric Depth Distribution Modelling based Depth Inference for
Multi-view Stereo [43.415242967722804]
最近のコストボリュームピラミッドに基づくディープニューラルネットワークは、多視点ステレオからの深度推論に高解像度の画像を効率的に活用する可能性を解き放った。
一般に、これらのアプローチは各ピクセルの深さが一様分布に従うと仮定する。
本研究では,非パラメトリック深度分布モデルを用いて,一様および多モード分布の画素を扱うコストボリュームを構築することを提案する。
論文 参考訳(メタデータ) (2022-05-08T05:13:04Z) - Depth Refinement for Improved Stereo Reconstruction [13.941756438712382]
立体画像からの深度推定の現在の技術は、なおも内蔵の欠点に悩まされている。
簡単な解析により、深度誤差は物体の距離に2乗比例することが明らかになった。
本研究では,深度推定に改良ネットワークを用いた簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2021-12-15T12:21:08Z) - Multi-View Stereo Network with attention thin volume [0.0]
複数のRGB画像から深度値を推定するための効率的なマルチビューステレオ(MVS)ネットワークを提案する。
入力画像から支配的な情報を完全に集約する自己認識機構を導入する。
また,特徴集約に対するグループワイド相関を導入し,メモリと計算負荷を大幅に削減する。
論文 参考訳(メタデータ) (2021-10-16T11:51:23Z) - Non-local Recurrent Regularization Networks for Multi-view Stereo [108.17325696835542]
深層多視点ステレオネットワークでは、正確な深さ推定を実現するためにコスト正規化が不可欠である。
NR2-Netと呼ばれるマルチビューステレオのための新しい非局所リカレント正規化ネットワークを提案する。
提案手法は,DTU,タンク,テンプルの双方のデータセットに対して,最先端の再構築結果を実現する。
論文 参考訳(メタデータ) (2021-10-13T01:43:54Z) - Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume
Excitation [65.83008812026635]
本稿では,GCE ( Guided Cost Volume Excitation) を構築し,画像によって誘導されるコストボリュームの簡単なチャネル励磁により,性能が大幅に向上することを示す。
我々はCorrelate-and-Excite(CoEx)と呼ぶエンドツーエンドネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-12T14:32:26Z) - CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching [27.313740022587442]
ステレオマッチングネットワークのロバスト性を改善するために,カスケードとフューズドのコストボリュームに基づくネットワークCFNetを提案する。
分散に基づく不確実性推定を用いて、次の段階の差分探索空間を適応的に調整する。
提案手法は、最先端の総合性能を達成し、Robust Vision Challenge 2020のステレオタスクで1位を獲得します。
論文 参考訳(メタデータ) (2021-04-09T11:38:59Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
密な相関体積表現は冗長であり、その中の要素のほんの一部で正確なフロー推定が達成できることを示した。
実験により,高い精度を維持しつつ計算コストとメモリ使用量を大幅に削減できることを示した。
論文 参考訳(メタデータ) (2021-04-05T21:44:00Z) - Direct Depth Learning Network for Stereo Matching [79.3665881702387]
ステレオマッチングのための新しいダイレクトディープス学習ネットワーク(DDL-Net)が設計されている。
DDL-Netは、粗度推定段階と適応勾配深度補正段階の2段階からなる。
我々は,DDL-NetがSceneFlowデータセットで25%,DrivingStereoデータセットで12%の平均的な改善を実現していることを示す。
論文 参考訳(メタデータ) (2020-12-10T10:33:57Z) - Attention Aware Cost Volume Pyramid Based Multi-view Stereo Network for
3D Reconstruction [12.728154351588053]
マルチビュー画像から3次元再構成を行うための効率的なマルチビューステレオ(MVS)ネットワークを提案する。
高分解能深度を実現するために粗粒度深度推論戦略を導入する。
論文 参考訳(メタデータ) (2020-11-25T13:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。