Predicting Attributes of Nodes Using Network Structure
- URL: http://arxiv.org/abs/1912.12264v3
- Date: Tue, 12 Jan 2021 12:11:15 GMT
- Title: Predicting Attributes of Nodes Using Network Structure
- Authors: Sarwan Ali, Muhammad Haroon Shakeel, Imdadullah Khan, Safiullah
Faizullah, Muhammad Asad Khan
- Abstract summary: We propose an approach to represent a node by a feature map with respect to an attribute $a_i$ using all attributes of neighbors to predict attributes values for $a_i$.
We perform extensive experimentation on ten real-world datasets and show that the proposed feature map significantly improves the prediction accuracy as compared to baseline approaches on these datasets.
- Score: 0.34998703934432673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many graphs such as social networks, nodes have associated attributes
representing their behavior. Predicting node attributes in such graphs is an
important problem with applications in many domains like recommendation
systems, privacy preservation, and targeted advertisement. Attributes values
can be predicted by analyzing patterns and correlations among attributes and
employing classification/regression algorithms. However, these approaches do
not utilize readily available network topology information. In this regard,
interconnections between different attributes of nodes can be exploited to
improve the prediction accuracy. In this paper, we propose an approach to
represent a node by a feature map with respect to an attribute $a_i$ (which is
used as input for machine learning algorithms) using all attributes of
neighbors to predict attributes values for $a_i$. We perform extensive
experimentation on ten real-world datasets and show that the proposed feature
map significantly improves the prediction accuracy as compared to baseline
approaches on these datasets.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Structure and inference in hypergraphs with node attributes [1.024113475677323]
We show how node attributes can be used to improve our understanding of the structure resulting from higher-order interactions.
We develop a principled model that combines higher-order interactions and node attributes to better represent the observed interactions.
arXiv Detail & Related papers (2023-11-07T10:16:20Z) - Exact Recovery and Bregman Hard Clustering of Node-Attributed Stochastic
Block Model [0.16385815610837165]
This paper presents an information-theoretic criterion for the exact recovery of community labels.
It shows how network and attribute information can be exchanged in order to have exact recovery.
It also presents an iterative clustering algorithm that maximizes the joint likelihood.
arXiv Detail & Related papers (2023-10-30T16:46:05Z) - Disentangling Node Attributes from Graph Topology for Improved
Generalizability in Link Prediction [5.651457382936249]
Our proposed method, UPNA, solves the inductive link prediction problem by learning a function that takes a pair of node attributes and predicts the probability of an edge.
UPNA can be applied to various pairwise learning tasks and integrated with existing link prediction models to enhance their generalizability and bolster graph generative models.
arXiv Detail & Related papers (2023-07-17T22:19:12Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Node Attribute Completion in Knowledge Graphs with Multi-Relational
Propagation [14.58440933068]
Our approach, denoted as MrAP, imputes the values of missing attributes by propagating information across a knowledge graph.
It employs regression functions for predicting one node attribute from another depending on the relationship between the nodes and the type of the attributes.
arXiv Detail & Related papers (2020-11-10T18:36:33Z) - Learning on Attribute-Missing Graphs [66.76561524848304]
There is a graph where attributes of only partial nodes could be available and those of the others might be entirely missing.
Existing graph learning methods including the popular GNN cannot provide satisfied learning performance.
We develop a novel distribution matching based GNN called structure-attribute transformer (SAT) for attribute-missing graphs.
arXiv Detail & Related papers (2020-11-03T11:09:52Z) - GAGE: Geometry Preserving Attributed Graph Embeddings [34.25102483600248]
This paper presents a novel approach for node embedding in attributed networks.
It preserves the distances of both the connections and the attributes.
An effective and lightweight algorithm is developed to tackle the learning task.
arXiv Detail & Related papers (2020-11-03T02:07:02Z) - Joint Item Recommendation and Attribute Inference: An Adaptive Graph
Convolutional Network Approach [61.2786065744784]
In recommender systems, users and items are associated with attributes, and users show preferences to items.
As annotating user (item) attributes is a labor intensive task, the attribute values are often incomplete with many missing attribute values.
We propose an Adaptive Graph Convolutional Network (AGCN) approach for joint item recommendation and attribute inference.
arXiv Detail & Related papers (2020-05-25T10:50:01Z) - GPS-Net: Graph Property Sensing Network for Scene Graph Generation [91.60326359082408]
Scene graph generation (SGG) aims to detect objects in an image along with their pairwise relationships.
GPS-Net fully explores three properties for SGG: edge direction information, the difference in priority between nodes, and the long-tailed distribution of relationships.
GPS-Net achieves state-of-the-art performance on three popular databases: VG, OI, and VRD by significant gains under various settings and metrics.
arXiv Detail & Related papers (2020-03-29T07:22:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.