DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations
- URL: http://arxiv.org/abs/2401.15584v1
- Date: Sun, 28 Jan 2024 06:43:13 GMT
- Title: DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations
- Authors: Jinlu Wang, Jipeng Guo, Yanfeng Sun, Junbin Gao, Shaofan Wang, Yachao
Yang, Baocai Yin
- Abstract summary: Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
- Score: 62.04558318166396
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) demonstrate a robust capability for
representation learning on graphs with complex structures, showcasing superior
performance in various applications. The majority of existing GNNs employ a
graph convolution operation by using both attribute and structure information
through coupled learning. In essence, GNNs, from an optimization perspective,
seek to learn a consensus and compromise embedding representation that balances
attribute and graph information, selectively exploring and retaining valid
information. To obtain a more comprehensive embedding representation of nodes,
a novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is
introduced. DGNN explores distinctive embedding representations from the
attribute and graph spaces by decoupled terms. Considering that semantic graph,
constructed from attribute feature space, consists of different node connection
information and provides enhancement for the topological graph, both
topological and semantic graphs are combined for the embedding representation
learning. Further, structural consistency among attribute embedding and graph
embeddings is promoted to effectively remove redundant information and
establish soft connection. This involves promoting factor sharing for adjacency
reconstruction matrices, facilitating the exploration of a consensus and
high-level correlation. Finally, a more powerful and complete representation is
achieved through the concatenation of these embeddings. Experimental results
conducted on several graph benchmark datasets verify its superiority in node
classification task.
Related papers
- MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure [8.00268216176428]
Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing and learning representations from graph-structured data.
A crucial prerequisite for the outstanding performance of GNNs is the availability of complete graph information.
This study proposes a mutual dual-stream graph neural network (MDS-GNN) which implements a mutual benefit learning between features and structure.
arXiv Detail & Related papers (2024-08-09T03:42:56Z) - Higher Order Structures For Graph Explanations [9.164945693135959]
We present Framework For Higher-Order Representations In Graph Explanations (FORGE)
FORGE enables graph explainers to capture higher-order, multi-node interactions.
It improves average explanation accuracy by 1.9x and 2.25x, respectively.
arXiv Detail & Related papers (2024-06-05T13:31:30Z) - Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships [17.978546172777342]
Graph Neural Networks (GNNs) have excelled in learning from graph-structured data.
Despite their successes, GNNs are limited by neglecting the context of relationships across graphs.
We introduce Relating-Up, a plug-and-play module that enhances GNNs by exploiting inter-graph relationships.
arXiv Detail & Related papers (2024-05-07T02:16:54Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Hierarchical Graph Capsule Network [78.4325268572233]
We propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies.
To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole)
arXiv Detail & Related papers (2020-12-16T04:13:26Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.