Knowledge-guided Text Structuring in Clinical Trials
- URL: http://arxiv.org/abs/1912.12380v1
- Date: Sat, 28 Dec 2019 01:12:15 GMT
- Title: Knowledge-guided Text Structuring in Clinical Trials
- Authors: Yingcheng Sun, Kenneth Loparo
- Abstract summary: We propose a knowledge-guided text structuring framework with an automatically generated knowledge base.
Experimental results show that our method can achieve overall high precision and recall.
- Score: 0.38073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical trial records are variable resources or the analysis of patients and
diseases. Information extraction from free text such as eligibility criteria
and summary of results and conclusions in clinical trials would better support
computer-based eligibility query formulation and electronic patient screening.
Previous research has focused on extracting information from eligibility
criteria, with usually a single pair of medical entity and attribute, but
seldom considering other kinds of free text with multiple entities, attributes
and relations that are more complex for parsing. In this paper, we propose a
knowledge-guided text structuring framework with an automatically generated
knowledge base as training corpus and word dependency relations as context
information to transfer free text into formal, computer-interpretable
representations. Experimental results show that our method can achieve overall
high precision and recall, demonstrating the effectiveness and efficiency of
the proposed method.
Related papers
- Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
Large language models (LLMs) have shown the potential to generate accurate clinical text summaries, but still struggle with issues regarding grounding and evaluation.
Here, we explore a general mitigation framework using Attribute Structuring (AS), which structures the summary evaluation process.
AS consistently improves the correspondence between human annotations and automated metrics in clinical text summarization.
arXiv Detail & Related papers (2024-03-01T21:59:03Z) - Leveraging text data for causal inference using electronic health records [1.4182510510164876]
This paper presents a unified framework for leveraging text data to support causal inference with electronic health data.
We show how incorporating text data in a traditional matching analysis can help strengthen the validity of an estimated treatment effect.
We believe these methods have the potential to expand the scope of secondary analysis of clinical data to domains where structured EHR data is limited.
arXiv Detail & Related papers (2023-06-09T16:06:02Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - Applying unsupervised keyphrase methods on concepts extracted from
discharge sheets [7.102620843620572]
It is necessary to identify the section in which each content is recorded and also to identify key concepts to extract meaning from clinical texts.
In this study, these challenges have been addressed by using clinical natural language processing techniques.
A set of popular unsupervised key phrase extraction methods has been verified and evaluated.
arXiv Detail & Related papers (2023-03-15T20:55:25Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - A Practical Approach towards Causality Mining in Clinical Text using
Active Transfer Learning [2.6125458645126907]
Causality mining is an active research area, which requires the application of state-of-the-art natural language processing techniques.
This research work is to create a framework, which can convert clinical text into causal knowledge.
arXiv Detail & Related papers (2020-12-10T06:51:13Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z) - Clinical Text Summarization with Syntax-Based Negation and Semantic
Concept Identification [22.556855536939878]
We use computational linguistics with human experts-curated biomedical knowledge base to achieve the interpretable and meaningful clinical text summarization.
Our research objective is to use the biomedical ontology with semantic information, and take the advantage from the language hierarchical structure, the constituency tree, in order to identify the correct clinical concepts and the corresponding negation information.
arXiv Detail & Related papers (2020-02-29T22:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.