Systematic Literature Review on Clinical Trial Eligibility Matching
- URL: http://arxiv.org/abs/2503.00863v1
- Date: Sun, 02 Mar 2025 11:45:50 GMT
- Title: Systematic Literature Review on Clinical Trial Eligibility Matching
- Authors: Muhammad Talha Sharif, Abdul Rehman,
- Abstract summary: Review highlights how explainable AI and standardized ontology can bolster clinician trust and broaden adoption.<n>Further research into advanced semantic and temporal representations, expanded data integration, and rigorous prospective evaluations is necessary to fully realize the transformative potential of NLP in clinical trial recruitment.
- Score: 0.24554686192257422
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Clinical trial eligibility matching is a critical yet often labor-intensive and error-prone step in medical research, as it ensures that participants meet precise criteria for safe and reliable study outcomes. Recent advances in Natural Language Processing (NLP) have shown promise in automating and improving this process by rapidly analyzing large volumes of unstructured clinical text and structured electronic health record (EHR) data. In this paper, we present a systematic overview of current NLP methodologies applied to clinical trial eligibility screening, focusing on data sources, annotation practices, machine learning approaches, and real-world implementation challenges. A comprehensive literature search (spanning Google Scholar, Mendeley, and PubMed from 2015 to 2024) yielded high-quality studies, each demonstrating the potential of techniques such as rule-based systems, named entity recognition, contextual embeddings, and ontology-based normalization to enhance patient matching accuracy. While results indicate substantial improvements in screening efficiency and precision, limitations persist regarding data completeness, annotation consistency, and model scalability across diverse clinical domains. The review highlights how explainable AI and standardized ontologies can bolster clinician trust and broaden adoption. Looking ahead, further research into advanced semantic and temporal representations, expanded data integration, and rigorous prospective evaluations is necessary to fully realize the transformative potential of NLP in clinical trial recruitment.
Related papers
- Launching Insights: A Pilot Study on Leveraging Real-World Observational Data from the Mayo Clinic Platform to Advance Clinical Research [15.04629464273677]
The Mayo Clinic Platform (MCP) was established to address challenges by providing a scalable ecosystem to support clinical research and AI development.
We conducted four research projects leveraging MCP's data infrastructure and analytical capabilities to demonstrate its potential in facilitating real-world evidence generation and AI-driven clinical insights.
arXiv Detail & Related papers (2025-03-21T16:06:21Z) - Advancing clinical trial outcomes using deep learning and predictive modelling: bridging precision medicine and patient-centered care [0.0]
Deep learning and predictive modelling have emerged as transformative tools for optimizing clinical trial design, patient recruitment, and real-time monitoring.<n>This study explores the application of deep learning techniques, such as convolutional neural networks [CNNs] and transformerbased models, to stratify patients.<n>Predictive modelling approaches, including survival analysis and time-series forecasting, are employed to predict trial outcomes, enhancing efficiency and reducing trial failure rates.
arXiv Detail & Related papers (2024-12-09T23:20:08Z) - DIRI: Adversarial Patient Reidentification with Large Language Models for Evaluating Clinical Text Anonymization [13.038800602897354]
We develop an adversarial approach using a large language model to re-identify the patient corresponding to a redacted clinical note.
Our method uses a large language model to reidentify the patient corresponding to a redacted clinical note.
Although ClinicalBERT was the most effective, masking all identified PII, our tool still reidentified 9% of clinical notes.
arXiv Detail & Related papers (2024-10-22T14:06:31Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Automated Scoring of Clinical Patient Notes using Advanced NLP and
Pseudo Labeling [2.711804338865226]
This research introduces an approach leveraging state-of-the-art Natural Language Processing (NLP) techniques.
Our methodology enhances efficiency and effectiveness, significantly reducing training time without compromising performance.
arXiv Detail & Related papers (2024-01-18T05:17:18Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - FineEHR: Refine Clinical Note Representations to Improve Mortality
Prediction [3.9026461169566673]
Large-scale electronic health records provide machine learning models with an abundance of clinical text and vital sign data.
Despite the emergence of advanced Natural Language Processing (NLP) algorithms for clinical note analysis, the complex textual structure and noise present in raw clinical data have posed significant challenges.
We propose FINEEHR, a system that utilizes two representation learning techniques, namely metric learning and fine-tuning, to refine clinical note embeddings.
arXiv Detail & Related papers (2023-04-24T02:42:52Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z) - Knowledge-guided Text Structuring in Clinical Trials [0.38073142980733]
We propose a knowledge-guided text structuring framework with an automatically generated knowledge base.
Experimental results show that our method can achieve overall high precision and recall.
arXiv Detail & Related papers (2019-12-28T01:12:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.