Mixed-Precision Quantized Neural Network with Progressively Decreasing
Bitwidth For Image Classification and Object Detection
- URL: http://arxiv.org/abs/1912.12656v1
- Date: Sun, 29 Dec 2019 14:11:33 GMT
- Title: Mixed-Precision Quantized Neural Network with Progressively Decreasing
Bitwidth For Image Classification and Object Detection
- Authors: Tianshu Chu, Qin Luo, Jie Yang, Xiaolin Huang
- Abstract summary: A mixed-precision quantized neural network with progressively ecreasing bitwidth is proposed to improve the trade-off between accuracy and compression.
Experiments on typical network architectures and benchmark datasets demonstrate that the proposed method could achieve better or comparable results.
- Score: 21.48875255723581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient model inference is an important and practical issue in the
deployment of deep neural network on resource constraint platforms. Network
quantization addresses this problem effectively by leveraging low-bit
representation and arithmetic that could be conducted on dedicated embedded
systems. In the previous works, the parameter bitwidth is set homogeneously and
there is a trade-off between superior performance and aggressive compression.
Actually the stacked network layers, which are generally regarded as
hierarchical feature extractors, contribute diversely to the overall
performance. For a well-trained neural network, the feature distributions of
different categories differentiate gradually as the network propagates forward.
Hence the capability requirement on the subsequent feature extractors is
reduced. It indicates that the neurons in posterior layers could be assigned
with lower bitwidth for quantized neural networks. Based on this observation, a
simple but effective mixed-precision quantized neural network with
progressively ecreasing bitwidth is proposed to improve the trade-off between
accuracy and compression. Extensive experiments on typical network
architectures and benchmark datasets demonstrate that the proposed method could
achieve better or comparable results while reducing the memory space for
quantized parameters by more than 30\% in comparison with the homogeneous
counterparts. In addition, the results also demonstrate that the
higher-precision bottom layers could boost the 1-bit network performance
appreciably due to a better preservation of the original image information
while the lower-precision posterior layers contribute to the regularization of
$k-$bit networks.
Related papers
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - Towards Efficient Verification of Quantized Neural Networks [9.352320240912109]
Quantization replaces floating point arithmetic with integer arithmetic in deep neural network models.
We show how efficiency can be improved by utilizing gradient-based search methods and also bound-propagation techniques.
arXiv Detail & Related papers (2023-12-20T00:43:13Z) - Compression with Bayesian Implicit Neural Representations [16.593537431810237]
We propose overfitting variational neural networks to the data and compressing an approximate posterior weight sample using relative entropy coding instead of quantizing and entropy coding it.
Experiments show that our method achieves strong performance on image and audio compression while retaining simplicity.
arXiv Detail & Related papers (2023-05-30T16:29:52Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
We propose a novel storage format for convolutional neural networks (CNNs) based on source coding and leveraging both weight pruning and quantization.
We achieve a reduction of space occupancy up to 0.6% on fully connected layers and 5.44% on the whole network, while performing at least as competitive as the baseline.
arXiv Detail & Related papers (2021-08-28T20:39:54Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Compact Neural Representation Using Attentive Network Pruning [1.0152838128195465]
We describe a Top-Down attention mechanism that is added to a Bottom-Up feedforward network to select important connections and subsequently prune redundant ones at all parametric layers.
Our method not only introduces a novel hierarchical selection mechanism as the basis of pruning but also remains competitive with previous baseline methods in the experimental evaluation.
arXiv Detail & Related papers (2020-05-10T03:20:01Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.