Towards Efficient Verification of Quantized Neural Networks
- URL: http://arxiv.org/abs/2312.12679v2
- Date: Wed, 27 Dec 2023 12:00:06 GMT
- Title: Towards Efficient Verification of Quantized Neural Networks
- Authors: Pei Huang, Haoze Wu, Yuting Yang, Ieva Daukantas, Min Wu, Yedi Zhang
and Clark Barrett
- Abstract summary: Quantization replaces floating point arithmetic with integer arithmetic in deep neural network models.
We show how efficiency can be improved by utilizing gradient-based search methods and also bound-propagation techniques.
- Score: 9.352320240912109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization replaces floating point arithmetic with integer arithmetic in
deep neural network models, providing more efficient on-device inference with
less power and memory. In this work, we propose a framework for formally
verifying properties of quantized neural networks. Our baseline technique is
based on integer linear programming which guarantees both soundness and
completeness. We then show how efficiency can be improved by utilizing
gradient-based heuristic search methods and also bound-propagation techniques.
We evaluate our approach on perception networks quantized with PyTorch. Our
results show that we can verify quantized networks with better scalability and
efficiency than the previous state of the art.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
We modify a post-training neural-network quantization method, GPFQ, that is based on a greedy path-following mechanism.
We prove that for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights.
arXiv Detail & Related papers (2022-01-26T18:47:38Z) - A Layer-wise Adversarial-aware Quantization Optimization for Improving
Robustness [4.794745827538956]
We find that adversarially-trained neural networks are more vulnerable to quantization loss than plain models.
We propose a layer-wise adversarial-aware quantization method, using the Lipschitz constant to choose the best quantization parameter settings for a neural network.
Experiment results show that our method can effectively and efficiently improve the robustness of quantized adversarially-trained neural networks.
arXiv Detail & Related papers (2021-10-23T22:11:30Z) - Neural Network Pruning Through Constrained Reinforcement Learning [3.2880869992413246]
We propose a general methodology for pruning neural networks.
Our proposed methodology can prune neural networks to respect pre-defined computational budgets.
We prove the effectiveness of our approach via comparison with state-of-the-art methods on standard image classification datasets.
arXiv Detail & Related papers (2021-10-16T11:57:38Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Accelerating Neural Network Inference by Overflow Aware Quantization [16.673051600608535]
Inherited heavy computation of deep neural networks prevents their widespread applications.
We propose an overflow aware quantization method by designing trainable adaptive fixed-point representation.
With the proposed method, we are able to fully utilize the computing power to minimize the quantization loss and obtain optimized inference performance.
arXiv Detail & Related papers (2020-05-27T11:56:22Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z) - Mixed-Precision Quantized Neural Network with Progressively Decreasing
Bitwidth For Image Classification and Object Detection [21.48875255723581]
A mixed-precision quantized neural network with progressively ecreasing bitwidth is proposed to improve the trade-off between accuracy and compression.
Experiments on typical network architectures and benchmark datasets demonstrate that the proposed method could achieve better or comparable results.
arXiv Detail & Related papers (2019-12-29T14:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.