Semi-Supervised Learning with Normalizing Flows
- URL: http://arxiv.org/abs/1912.13025v1
- Date: Mon, 30 Dec 2019 17:36:33 GMT
- Title: Semi-Supervised Learning with Normalizing Flows
- Authors: Pavel Izmailov, Polina Kirichenko, Marc Finzi, Andrew Gordon Wilson
- Abstract summary: FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
- Score: 54.376602201489995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows transform a latent distribution through an invertible
neural network for a flexible and pleasingly simple approach to generative
modelling, while preserving an exact likelihood. We propose FlowGMM, an
end-to-end approach to generative semi supervised learning with normalizing
flows, using a latent Gaussian mixture model. FlowGMM is distinct in its
simplicity, unified treatment of labelled and unlabelled data with an exact
likelihood, interpretability, and broad applicability beyond image data. We
show promising results on a wide range of applications, including AG-News and
Yahoo Answers text data, tabular data, and semi-supervised image
classification. We also show that FlowGMM can discover interpretable structure,
provide real-time optimization-free feature visualizations, and specify well
calibrated predictive distributions.
Related papers
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
We introduce a novel statistical framework for learning a mixture of local normalizing flows as "chart maps" over a data manifold.
Our framework augments the expressivity of recent approaches while preserving the signature property of normalizing flows, that they admit exact density evaluation.
arXiv Detail & Related papers (2022-03-22T09:22:18Z) - A new perspective on probabilistic image modeling [92.89846887298852]
We present a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference.
DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs.
We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling.
arXiv Detail & Related papers (2022-03-21T14:53:57Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z) - Flows for simultaneous manifold learning and density estimation [12.451050883955071]
manifold-learning flows (M-flows) represent datasets with a manifold structure more faithfully.
M-flows learn the data manifold and allow for better inference than standard flows in the ambient data space.
arXiv Detail & Related papers (2020-03-31T02:07:48Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.