論文の概要: Leveraging Semi-Supervised Learning for Fairness using Neural Networks
- arxiv url: http://arxiv.org/abs/1912.13230v1
- Date: Tue, 31 Dec 2019 09:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 20:06:18.225191
- Title: Leveraging Semi-Supervised Learning for Fairness using Neural Networks
- Title(参考訳): ニューラルネットワークを用いた公平性のための半教師付き学習の活用
- Authors: Vahid Noroozi, Sara Bahaadini, Samira Sheikhi, Nooshin Mojab, Philip
S. Yu
- Abstract要約: 機械学習に基づく意思決定システムの公平性に対する懸念が高まっている。
本稿では,ラベルのないデータから得られるニューラルネットワークを用いた半教師付きアルゴリズムを提案する。
提案したSSFairと呼ばれるモデルは、ラベルのないデータの情報を活用して、トレーニングデータのバイアスを軽減する。
- 参考スコア(独自算出の注目度): 49.604038072384995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a growing concern about the fairness of decision-making
systems based on machine learning. The shortage of labeled data has been always
a challenging problem facing machine learning based systems. In such scenarios,
semi-supervised learning has shown to be an effective way of exploiting
unlabeled data to improve upon the performance of model. Notably, unlabeled
data do not contain label information which itself can be a significant source
of bias in training machine learning systems. This inspired us to tackle the
challenge of fairness by formulating the problem in a semi-supervised
framework. In this paper, we propose a semi-supervised algorithm using neural
networks benefiting from unlabeled data to not just improve the performance but
also improve the fairness of the decision-making process. The proposed model,
called SSFair, exploits the information in the unlabeled data to mitigate the
bias in the training data.
- Abstract(参考訳): 機械学習に基づく意思決定システムの公平性に対する懸念が高まっている。
ラベル付きデータの不足は常に、機械学習ベースのシステムで直面する課題である。
このようなシナリオでは、半教師付き学習はラベルなしのデータを利用してモデルの性能を改善する効果的な方法であることが示されている。
特に、ラベルなしデータは、機械学習システムのトレーニングにおいて重要なバイアス源となるラベル情報を含んでいない。
これにより、半教師付きフレームワークで問題を定式化することで、公正性の課題に取り組むことができました。
本稿では,ラベルのないデータから得られるニューラルネットワークを用いた半教師付きアルゴリズムを提案する。
提案モデルはssfairと呼ばれ、ラベルのないデータ内の情報を活用し、トレーニングデータのバイアスを軽減する。
関連論文リスト
- Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models [7.742594744641462]
機械学習の目的は、よく訓練されたモデルで残りのデータセットのデータを保存しながら、忘れられたデータから派生した情報を削除することである。
本研究では,アンラーニングプロセス中にラベルを必要とせずに,教師なしのアンラーニングアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-31T00:29:00Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
グラフデータ分析におけるグラフニューラルネットワーク(GNN)の出現は、モデルトレーニング中のデータ誤用に関する重要な懸念を引き起こしている。
既存の手法は、データ誤用検出または緩和のいずれかに対応しており、主にローカルGNNモデル用に設計されている。
本稿では,これらの課題に対処するため,GraphGuardという先駆的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-13T02:59:37Z) - Random Relabeling for Efficient Machine Unlearning [8.871042314510788]
個人が個人データと関連するデータプライバシ規則を撤回する権利は、機械学習に大きな課題をもたらす。
本研究では,逐次データ削除要求を効率的に処理するためのランダムな学習手法を提案する。
確率分布の類似性に基づく制約の少ない除去証明法も提案する。
論文 参考訳(メタデータ) (2023-05-21T02:37:26Z) - FedSEAL: Semi-Supervised Federated Learning with Self-Ensemble Learning
and Negative Learning [7.771967424619346]
Federated Learning (FL) は、分散化されたプライバシ保護機械学習(FL)フレームワークとして人気がある。
本稿では,この半教師付きフェデレート学習(SSFL)問題を解くために,FedSEALと呼ばれる新しいFLアルゴリズムを提案する。
提案アルゴリズムは,自己アンサンブル学習と相補的負学習を利用して,未ラベルデータに対するクライアントの教師なし学習の精度と効率を両立させる。
論文 参考訳(メタデータ) (2021-10-15T03:03:23Z) - Fairness-Aware Learning from Corrupted Data [33.52974791836553]
任意のデータ操作下での公平性を考慮した学習について検討する。
このバイアスの強さは、データ内の未表現の保護されたグループで学習する際の問題の増加を示す。
2つの自然学習アルゴリズムが、逆データ操作の精度と公正性の両面から順序-最適保証を実現することを証明した。
論文 参考訳(メタデータ) (2021-02-11T13:48:41Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Fairness Constraints in Semi-supervised Learning [56.48626493765908]
我々は,最適化問題として定式化された,公平な半教師付き学習のためのフレームワークを開発する。
偏り・分散・雑音分解による半教師あり学習における識別源を理論的に分析する。
本手法は, 公平な半教師付き学習を達成でき, 公正な教師付き学習よりも精度と公平性のトレードオフが良好である。
論文 参考訳(メタデータ) (2020-09-14T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。