Ensemble emotion recognizing with multiple modal physiological signals
- URL: http://arxiv.org/abs/2001.00191v1
- Date: Wed, 1 Jan 2020 11:44:43 GMT
- Title: Ensemble emotion recognizing with multiple modal physiological signals
- Authors: Jing Zhang, Yong Zhang, Suhua Zhan, Cheng Cheng
- Abstract summary: We propose an emotion classification model through multiple modal physiological signals for different emotions.
Experiments are conducted on the benchmark DEAP datasets.
For the four-class task, the highest average classification accuracy is 90.74, and it shows good stability.
- Score: 9.406420908566517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physiological signals that provide the objective repression of human
affective states are attracted increasing attention in the emotion recognition
field. However, the single signal is difficult to obtain completely and
accurately description for emotion. Multiple physiological signals fusing
models, building the uniform classification model by means of consistent and
complementary information from different emotions to improve recognition
performance. Original fusing models usually choose the particular
classification method to recognition, which is ignoring different distribution
of multiple signals. Aiming above problems, in this work, we propose an emotion
classification model through multiple modal physiological signals for different
emotions. Features are extracted from EEG, EMG, EOG signals for characterizing
emotional state on valence and arousal levels. For characterization, four bands
filtering theta, beta, alpha, gamma for signal preprocessing are adopted and
three Hjorth parameters are computing as features. To improve classification
performance, an ensemble classifier is built. Experiments are conducted on the
benchmark DEAP datasets. For the two-class task, the best result on arousal is
94.42\%, the best result on valence is 94.02\%, respectively. For the
four-class task, the highest average classification accuracy is 90.74, and it
shows good stability. The influence of different peripheral physiological
signals for results is also analyzed in this paper.
Related papers
- PHemoNet: A Multimodal Network for Physiological Signals [9.54382727022316]
We introduce PHemoNet, a fully hypercomplex network for multimodal emotion recognition from physiological signals.
The architecture comprises modality-specific encoders and a fusion module.
The proposed method outperforms current state-of-the-art models on the MAHNOB-HCI dataset.
arXiv Detail & Related papers (2024-09-13T21:14:27Z) - Decoding Human Emotions: Analyzing Multi-Channel EEG Data using LSTM Networks [0.0]
This study aims to understand and improve the predictive accuracy of emotional state classification by applying a Long Short-Term Memory (LSTM) network to analyze EEG signals.
Using a popular dataset of multi-channel EEG recordings known as DEAP, we look towards leveraging LSTM networks' properties to handle temporal dependencies within EEG signal data.
We obtain accuracies of 89.89%, 90.33%, 90.70%, and 90.54% for arousal, valence, dominance, and likeness, respectively, demonstrating significant improvements in emotion recognition model capabilities.
arXiv Detail & Related papers (2024-08-19T18:10:47Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Contrastive Learning of Subject-Invariant EEG Representations for
Cross-Subject Emotion Recognition [9.07006689672858]
We propose Contrast Learning method for Inter-Subject Alignment (ISA) for reliable cross-subject emotion recognition.
ISA involves maximizing the similarity in EEG signals across subjects when they received the same stimuli in contrast to different ones.
A convolutional neural network with depthwise spatial convolution and temporal convolution layers was applied to learn inter-subject representations from raw EEG signals.
arXiv Detail & Related papers (2021-09-20T14:13:45Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
We develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification.
Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject recognition.
arXiv Detail & Related papers (2021-05-30T14:47:20Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
We propose a technique based on Functional ANOVA to extract significant patterns of face muscles movements.
We determine if there are time-related differences on expressions among emotional groups by using a functional F-test.
arXiv Detail & Related papers (2021-03-01T08:31:08Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Investigating EEG-Based Functional Connectivity Patterns for Multimodal
Emotion Recognition [8.356765961526955]
We investigate three functional connectivity network features: strength, clustering, coefficient and eigenvector centrality.
The discrimination ability of the EEG connectivity features in emotion recognition is evaluated on three public EEG datasets.
We construct a multimodal emotion recognition model by combining the functional connectivity features from EEG and the features from eye movements or physiological signals.
arXiv Detail & Related papers (2020-04-04T16:51:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.