Deep-seeded Clustering for Emotion Recognition from Wearable Physiological Sensors
- URL: http://arxiv.org/abs/2308.09013v2
- Date: Tue, 15 Apr 2025 13:05:54 GMT
- Title: Deep-seeded Clustering for Emotion Recognition from Wearable Physiological Sensors
- Authors: Marta A. Conceição, Antoine Dubois, Sonja Haustein, Bruno Miranda, Carlos Lima Azevedo,
- Abstract summary: We propose and test a deep-seeded clustering algorithm that automatically extracts and classifies features from physiological signals with minimal supervision.<n>We show that the model obtains good performance results across three different datasets frequently used in affective computing studies.
- Score: 1.380698851850167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to the circumplex model of affect, an emotional response could characterized by a level of pleasure (valence) and intensity (arousal). As it reflects on the autonomic nervous system (ANS) activity, modern wearable wristbands can record non-invasively and during our everyday lives peripheral end-points of this response. While emotion recognition from physiological signals is usually achieved using supervised machine learning algorithms that require ground truth labels for training, collecting it is cumbersome and particularly unfeasible in naturalistic settings, and extracting meaningful insights from these signals requires domain knowledge and might be prone to bias. Here, we propose and test a deep-seeded clustering algorithm that automatically extracts and classifies features from those physiological signals with minimal supervision - combining an autoencoder (AE) for unsupervised feature representation and c-means clustering for fine-grained classification. We also show that the model obtains good performance results across three different datasets frequently used in affective computing studies (accuracies of 80.7% on WESAD, 64.2% on Stress-Predict and 61.0% on CEAP360-VR).
Related papers
- Passive Measurement of Autonomic Arousal in Real-World Settings [17.490383024379053]
autonomic nervous system (ANS) is activated during stress.
ANS activity can have negative effects on cardiovascular health, sleep, the immune system, and mental health.
We present an approach to continuous remote measurement of ANS activation through widely available remote wrist-based sensors.
arXiv Detail & Related papers (2025-04-30T00:45:13Z) - Complex Emotion Recognition System using basic emotions via Facial Expression, EEG, and ECG Signals: a review [1.8310098790941458]
The Complex Emotion Recognition System (CERS) deciphers complex emotional states by examining combinations of basic emotions expressed, their interconnections, and the dynamic variations.
The development of AI systems for discerning complex emotions poses a substantial challenge with significant implications for affective computing.
incorporating physiological signals such as Electrocardiogram (ECG) and Electroencephalogram (EEG) can notably enhance CERS.
arXiv Detail & Related papers (2024-09-09T05:06:10Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
We evaluate the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions.
This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
arXiv Detail & Related papers (2024-01-23T16:49:54Z) - Emotion recognition based on multi-modal electrophysiology multi-head
attention Contrastive Learning [3.2536246345549538]
We propose ME-MHACL, a self-supervised contrastive learning-based multimodal emotion recognition method.
We apply the trained feature extractor to labeled electrophysiological signals and use multi-head attention mechanisms for feature fusion.
Our method outperformed existing benchmark methods in emotion recognition tasks and had good cross-individual generalization ability.
arXiv Detail & Related papers (2023-07-12T05:55:40Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Classification of Stress via Ambulatory ECG and GSR Data [0.0]
This work empirically assesses several approaches to detect stress using physiological data recorded in an ambulatory setting with self-reported stress annotations.
The optimal stress detection approach achieves 90.77% classification accuracy, 91.24 F1-submission, 90.42 Sensitivity and 91.08 Specificity.
arXiv Detail & Related papers (2022-07-19T15:57:14Z) - Towards Intrinsic Common Discriminative Features Learning for Face
Forgery Detection using Adversarial Learning [59.548960057358435]
We propose a novel method which utilizes adversarial learning to eliminate the negative effect of different forgery methods and facial identities.
Our face forgery detection model learns to extract common discriminative features through eliminating the effect of forgery methods and facial identities.
arXiv Detail & Related papers (2022-07-08T09:23:59Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Deep Convolution Network Based Emotion Analysis for Automatic Detection
of Mild Cognitive Impairment in the Elderly [15.217754542927961]
Early detection of cognitive impairment is of great importance to both patients and caregivers.
It has been found that patients with cognitive impairment show abnormal emotion patterns.
We present a novel deep convolution network-based system to detect the cognitive impairment.
arXiv Detail & Related papers (2021-11-09T11:51:33Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Contrastive Learning of Subject-Invariant EEG Representations for
Cross-Subject Emotion Recognition [9.07006689672858]
We propose Contrast Learning method for Inter-Subject Alignment (ISA) for reliable cross-subject emotion recognition.
ISA involves maximizing the similarity in EEG signals across subjects when they received the same stimuli in contrast to different ones.
A convolutional neural network with depthwise spatial convolution and temporal convolution layers was applied to learn inter-subject representations from raw EEG signals.
arXiv Detail & Related papers (2021-09-20T14:13:45Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.