Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies
- URL: http://arxiv.org/abs/2001.00248v2
- Date: Tue, 14 Apr 2020 01:44:03 GMT
- Title: Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies
- Authors: Sungryull Sohn, Hyunjae Woo, Jongwook Choi, Honglak Lee
- Abstract summary: We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
- Score: 57.27944046925876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose and address a novel few-shot RL problem, where a task is
characterized by a subtask graph which describes a set of subtasks and their
dependencies that are unknown to the agent. The agent needs to quickly adapt to
the task over few episodes during adaptation phase to maximize the return in
the test phase. Instead of directly learning a meta-policy, we develop a
Meta-learner with Subtask Graph Inference(MSGI), which infers the latent
parameter of the task by interacting with the environment and maximizes the
return given the latent parameter. To facilitate learning, we adopt an
intrinsic reward inspired by upper confidence bound (UCB) that encourages
efficient exploration. Our experiment results on two grid-world domains and
StarCraft II environments show that the proposed method is able to accurately
infer the latent task parameter, and to adapt more efficiently than existing
meta RL and hierarchical RL methods.
Related papers
- Task-Aware Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [70.96345405979179]
The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction.
variations in task content and complexity pose significant challenges in policy formulation.
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
arXiv Detail & Related papers (2024-11-02T05:49:14Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
This work introduces a novel objective function to learn an action translator among training tasks.
We theoretically verify that the value of the transferred policy with the action translator can be close to the value of the source policy.
We propose to combine the action translator with context-based meta-RL algorithms for better data collection and more efficient exploration during meta-training.
arXiv Detail & Related papers (2022-07-19T04:58:06Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Meta-Reinforcement Learning in Broad and Non-Parametric Environments [8.091658684517103]
We introduce TIGR, a Task-Inference-based meta-RL algorithm for tasks in non-parametric environments.
We decouple the policy training from the task-inference learning and efficiently train the inference mechanism on the basis of an unsupervised reconstruction objective.
We provide a benchmark with qualitatively distinct tasks based on the half-cheetah environment and demonstrate the superior performance of TIGR compared to state-of-the-art meta-RL approaches.
arXiv Detail & Related papers (2021-08-08T19:32:44Z) - Discovery of Options via Meta-Learned Subgoals [59.2160583043938]
Temporal abstractions in the form of options have been shown to help reinforcement learning (RL) agents learn faster.
We introduce a novel meta-gradient approach for discovering useful options in multi-task RL environments.
arXiv Detail & Related papers (2021-02-12T19:50:40Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.