Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization
- URL: http://arxiv.org/abs/2205.12648v1
- Date: Wed, 25 May 2022 10:44:25 GMT
- Title: Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization
- Authors: Sungryull Sohn, Hyunjae Woo, Jongwook Choi, lyubing qiang, Izzeddin
Gur, Aleksandra Faust, Honglak Lee
- Abstract summary: We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
- Score: 101.72755769194677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We tackle real-world problems with complex structures beyond the pixel-based
game or simulator. We formulate it as a few-shot reinforcement learning problem
where a task is characterized by a subtask graph that defines a set of subtasks
and their dependencies that are unknown to the agent. Different from the
previous meta-rl methods trying to directly infer the unstructured task
embedding, our multi-task subtask graph inferencer (MTSGI) first infers the
common high-level task structure in terms of the subtask graph from the
training tasks, and use it as a prior to improve the task inference in testing.
Our experiment results on 2D grid-world and complex web navigation domains show
that the proposed method can learn and leverage the common underlying structure
of the tasks for faster adaptation to the unseen tasks than various existing
algorithms such as meta reinforcement learning, hierarchical reinforcement
learning, and other heuristic agents.
Related papers
- Task Indicating Transformer for Task-conditional Dense Predictions [16.92067246179703]
We introduce a novel task-conditional framework called Task Indicating Transformer (TIT) to tackle this challenge.
Our approach designs a Mix Task Adapter module within the transformer block, which incorporates a Task Indicating Matrix through matrix decomposition.
We also propose a Task Gate Decoder module that harnesses a Task Indicating Vector and gating mechanism to facilitate adaptive multi-scale feature refinement.
arXiv Detail & Related papers (2024-03-01T07:06:57Z) - Robust Subtask Learning for Compositional Generalization [20.54144051436337]
We focus on the problem of training subtask policies in a way that they can be used to perform any task.
We aim to maximize the worst-case performance over all tasks as opposed to the average-case performance.
arXiv Detail & Related papers (2023-02-06T18:19:25Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z) - A Multi-Task Deep Learning Framework for Building Footprint Segmentation [0.0]
We propose a joint optimization scheme for the task of building footprint delineation.
We also introduce two auxiliary tasks; image reconstruction and building footprint boundary segmentation.
In particular, we propose a deep multi-task learning (MTL) based unified fully convolutional framework.
arXiv Detail & Related papers (2021-04-19T15:07:27Z) - Learning Task Decomposition with Ordered Memory Policy Network [73.3813423684999]
We propose Ordered Memory Policy Network (OMPN) to discover subtask hierarchy by learning from demonstration.
OMPN can be applied to partially observable environments and still achieve higher task decomposition performance.
Our visualization confirms that the subtask hierarchy can emerge in our model.
arXiv Detail & Related papers (2021-03-19T18:13:35Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.