Bohmian mechanics of Klein-Gordon equation via quantum metric and mass
- URL: http://arxiv.org/abs/2001.00551v1
- Date: Thu, 2 Jan 2020 18:19:17 GMT
- Title: Bohmian mechanics of Klein-Gordon equation via quantum metric and mass
- Authors: S. Jalalzadeh and A. J. S. Capistrano
- Abstract summary: The causal interpretation of relativistic quantum mechanics has the problems of superluminal velocities, motion backward in time and the incorrect non-relativistic limit.
We introduce simultaneous quantum mass and quantum metric of curved spacetime to obtain a correct relativistic theory free of mentioned problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The causal stochastic interpretation of relativistic quantum mechanics has
the problems of superluminal velocities, motion backward in time and the
incorrect non-relativistic limit. In this paper, according to the original
ideas of de Broglie, Bohm and Takabayasi, we have introduced simultaneous
quantum mass and quantum metric of curved spacetime to obtain a correct
relativistic theory free of mentioned problems. \keywords{Bohmian mechanics;
Klein-Gordon equation; quantum conformal transformations.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum mechanics without quantum potentials [0.0]
Non-locality in quantum mechanics can be resolved by considering relativistically covariant diffusion in spacetime.
We introduce the concept of momentum equilinear to replace the second-order Bohm-Newton equations of motion.
arXiv Detail & Related papers (2024-01-08T18:51:38Z) - An ontological description for relativistic, massive bosons [0.0]
Locality holds for the quantum theory, and seems to be fully obeyed also by the classical treatment.
We do discuss extensively the distinction between the quantum treatment and the classical one, even though they produce exactly the same equations mathematically.
It is suggested to apply this theory for real time quantum model simulations.
arXiv Detail & Related papers (2023-06-16T14:53:02Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - Space-Time-Matter: Some Notes on the Localization Problem in
Relativistic Quantum Theory [0.0]
This work aims to shed some light on the meaning of the positive energy assumption in relativistic quantum theory.
It is shown that the positive energy property of solutions of relativistic wave equations is very fragile with respect to state transformations beyond free time evolution.
arXiv Detail & Related papers (2023-05-29T14:29:26Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Fully Symmetric Relativistic Quantum Mechanics and Its Physical
Implications [0.0]
A new formulation of relativistic quantum mechanics is presented and applied to a free, massive, and spin zero elementary particle in the Minkowski spacetime.
The reformulation requires that time and space, as well as the timelike and spacelike intervals, are treated equally, which makes the new theory fully symmetric and consistent with the Special Theory of Relativity.
arXiv Detail & Related papers (2021-05-31T19:13:19Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - The arithmetic of uncertainty unifies quantum formalism and relativistic
spacetime [0.0]
Quantum theory deals with objects probabilistically at small scales, whereas relativity deals classically with motion in space and time.
We show here that the mathematical structures of quantum theory and of relativity follow together from pure thought.
One dimension of time and three dimensions of space are thus derived as the profound and inevitable framework of physics.
arXiv Detail & Related papers (2020-12-19T20:40:27Z) - Quantum simulation of quantum field theories as quantum chemistry [9.208624182273288]
Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories.
We show that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly.
arXiv Detail & Related papers (2020-04-28T01:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.