A non-relativistic theory of quantum mechanics with local modulus symmetry
- URL: http://arxiv.org/abs/2008.07749v3
- Date: Mon, 17 Mar 2025 14:08:08 GMT
- Title: A non-relativistic theory of quantum mechanics with local modulus symmetry
- Authors: Tao Zhou,
- Abstract summary: We have constructed a non-relativistic theory of quantum mechanics based on local modulus symmetry.<n>A new real and positive function called the quantum metric function is attached to the complex conjugate of the wave function.<n>In an expanding universe, these theoretical features produce new effects that deviate from predictions of conventional quantum mechanics and Newtonian gravity.
- Score: 8.415967794907697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have constructed a non-relativistic theory of quantum mechanics based on local modulus symmetry. The resulting connection in the covariant derivative is identified as the escape velocity of the gravitational field. A new real and positive function called the quantum metric function is attached to the complex conjugate of the wave function to satisfy the local modulus symmetry requirement. In an expanding universe, these theoretical features produce new effects that deviate from predictions of conventional quantum mechanics and Newtonian gravity. The quantum metric function yields negligible change for microscopic objects but produces quantum pointer states for macroscopic objects, thus providing a solution to the quantum measurement problem. The time-reversal symmetry is broken in the new quantum kinematics, which has implications for the second law of thermodynamics. The modification of Newtonian gravity is negligible in smaller bound systems but can become significant at the galactic scales. Its potential association with the mass discrepancy problem in the galactic systems is discussed.
Related papers
- On a modified quantum theory with objective quantum thermalization and spontaneous universal irreversibility [0.0]
We argue that quantum theory is an effective theory and requires corrections to accurately describe systems approaching the thermodynamic limit.
We construct a minimal extension of quantum theory which is practically identical to quantum mechanics for microscopic systems.
We discuss the inclusion of objective collapse, thereby realizing a falsifiable theory of spontaneous universal irreversibility.
arXiv Detail & Related papers (2025-04-22T18:38:28Z) - Super Quantum Mechanics [37.69303106863453]
We introduce Super Quantum Mechanics (SQM) as a theory that considers states in Hilbert space subject to multiple quadratic constraints.
In this case, the stationary SQM problem is a quantum inverse problem with multiple applications in machine learning and artificial intelligence.
arXiv Detail & Related papers (2025-01-25T19:41:04Z) - Minisuperspace model of quantum geometrodynamics in the Madelung-Bohm formalism [0.0]
An analogy between non-relativistic quantum mechanics in the Madelung formulation and quantum geometrodynamics is drawn.
It is shown that the perfect nature of the fluid is broken by the quantum Bohm potential.
The explicit dependences of the cosmic scale factor on the conformal time, which take into account the quantum additive, are found for empty space with spatial curvature and for a spatially flat universe with dust and radiation.
arXiv Detail & Related papers (2024-10-28T15:01:00Z) - Physical consequences of Lindbladian invariance transformations [44.99833362998488]
We show that symmetry transformations can be exploited, on their own, to optimize practical physical tasks.
In particular, we show how they can be used to change the measurable values of physical quantities regarding the exchange of energy and/or information with the environment.
arXiv Detail & Related papers (2024-07-02T18:22:11Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Relativistic Dips in Entangling Power of Gravity [0.0]
We show that quantum correlations can remain strongly suppressed for certain choices of parameters.
We find a pronounced cancellation point far from the Planck scale, where the system tends towards classicalization.
arXiv Detail & Related papers (2024-05-07T20:44:30Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum conformal symmetries for spacetimes in superposition [0.0]
We build an explicit quantum operator that can map states describing a quantum field on a superposition of spacetimes to states representing a quantum field with a superposition of masses on a Minkowski background.
It can be used to import the phenomenon of particle production in curved spacetime to its conformally equivalent counterpart, thus revealing new features in modified Minkowski spacetime.
arXiv Detail & Related papers (2022-06-30T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - A Mechanical Implementation and Diagrammatic Calculation of Entangled
Basis States [0.0]
We give for the first time a diagrammatic calculational tool of quantum entanglement.
When two or more particles are correlated in a certain way, no matter how far apart they are in space, their states remain correlated.
Our results seem to advocate the idea that quantum entanglement generates the extra dimensions of the gravitational theory.
arXiv Detail & Related papers (2021-12-20T00:31:48Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Wave Functional of the Universe and Time [62.997667081978825]
A version of the quantum theory of gravity based on the concept of the wave functional of the universe is proposed.
The history of the evolution of the universe is described in terms of coordinate time together with arbitrary lapse and shift functions.
arXiv Detail & Related papers (2021-10-18T09:41:59Z) - Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum
Dynamics of Cosmological Perturbations [0.0]
entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements.
We show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced.
arXiv Detail & Related papers (2021-10-06T13:43:00Z) - Gauge equivariant neural networks for quantum lattice gauge theories [2.14192068078728]
Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials.
Motivated by the desire to efficiently simulate many-body quantum systems with exact local gauge invariance, gauge equivariant neural-network quantum states are introduced.
arXiv Detail & Related papers (2020-12-09T18:57:02Z) - Projection Hypothesis from the von Neumann-type Interaction with a
Bose-Einstein Condensate [0.0]
We derive the projection hypothesis in projective quantum measurement by restricting the set of observables.
The key steps in the derivation are the return of the symmetry translation of this quantum coordinate to the inverse translation of the c-number spatial coordinate in quantum field theory.
arXiv Detail & Related papers (2020-12-03T13:05:36Z) - Modified Relational Quantum Mechanics [0.0]
An observer can develop an internally consistent description of the universe but it will, of necessity, differ in particulars from the description developed by any other observer.
The state vector is epistomological and relative to a given quantum system as in the original relational quantum mechanics.
arXiv Detail & Related papers (2020-11-25T21:53:15Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.