論文の概要: Excitation-based Voice Quality Analysis and Modification
- arxiv url: http://arxiv.org/abs/2001.00582v1
- Date: Thu, 2 Jan 2020 09:44:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 04:30:16.461194
- Title: Excitation-based Voice Quality Analysis and Modification
- Title(参考訳): 励振に基づく音声品質分析と修正
- Authors: Thomas Drugman, Thierry Dutoit, Baris Bozkurt
- Abstract要約: 同じ話者が発する3つの声質(モーダル、ソフト、ラウド)を含む大コーパスを解析する。
励起から抽出した特性の有意な差異が観察された。
HMM音声合成における後処理として音声品質変換システムを適用する。
- 参考スコア(独自算出の注目度): 11.481208551940998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the differences occuring in the excitation for
different voice qualities. Its goal is two-fold. First a large corpus
containing three voice qualities (modal, soft and loud) uttered by the same
speaker is analyzed and significant differences in characteristics extracted
from the excitation are observed. Secondly rules of modification derived from
the analysis are used to build a voice quality transformation system applied as
a post-process to HMM-based speech synthesis. The system is shown to
effectively achieve the transformations while maintaining the delivered
quality.
- Abstract(参考訳): 本稿では,異なる声質の励起における違いについて検討する。
目標は2つある。
まず、同一話者が発声する3つの声質(モーダル、ソフト、ラウド)を含む大音量コーパスを分析し、励起から抽出した特徴の有意差を観察する。
分析から派生した修正規則を用いて、hmmに基づく音声合成に後処理として適用する音声品質変換システムを構築する。
システムは、納品された品質を維持しながら、効果的な変換を実現する。
関連論文リスト
- Homogeneous Speaker Features for On-the-Fly Dysarthric and Elderly Speaker Adaptation [71.31331402404662]
本稿では, 変形性関節症と高齢者の話者レベルの特徴を学習するための2つの新しいデータ効率手法を提案する。
話者規則化スペクトルベース埋め込み-SBE特徴は、特別な正規化項を利用して適応における話者特徴の均一性を強制する。
テスト時間適応において、話者レベルのデータ量に敏感であることが示されるVR-LH機能に規定されている特徴ベースの学習隠れユニットコントリビューション(f-LHUC)。
論文 参考訳(メタデータ) (2024-07-08T18:20:24Z) - NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models [127.47252277138708]
ゼロショット方式で自然な音声を生成するために,分解拡散モデルを備えたTSSシステムであるNaturalSpeech 3を提案する。
具体的には、分解ベクトル量子化(FVQ)を用いて、音声波形をコンテンツ、韻律、音色、音響的詳細の部分空間に分解する。
実験により、NaturalSpeech 3は、品質、類似性、韻律、知性において最先端のTSSシステムより優れていることが示された。
論文 参考訳(メタデータ) (2024-03-05T16:35:25Z) - Towards Improving the Expressiveness of Singing Voice Synthesis with
BERT Derived Semantic Information [51.02264447897833]
本稿では、変換器(BERT)から派生したセマンティック埋め込みから双方向エンコーダ表現を用いた、エンドツーエンドの高品質な歌声合成(SVS)システムを提案する。
提案したSVSシステムは、高品質なVISingerで歌声を生成することができる。
論文 参考訳(メタデータ) (2023-08-31T16:12:01Z) - Advancing Natural-Language Based Audio Retrieval with PaSST and Large
Audio-Caption Data Sets [6.617487928813374]
本稿では,事前学習されたテキストとスペクトログラム変換器に基づく音声検索システムを提案する。
我々のシステムは2023年のDCASE Challengeで第1位にランクされ、ClosoV2ベンチマークでは5.6 pp. mAP@10で最先端の技術を上回りました。
論文 参考訳(メタデータ) (2023-08-08T13:46:55Z) - Make-A-Voice: Unified Voice Synthesis With Discrete Representation [77.3998611565557]
Make-A-Voiceは、個別表現から音声信号を合成・操作するための統合されたフレームワークである。
我々は,Make-A-Voiceは,競合するベースラインモデルと比較して,音質とスタイルの類似性が優れていることを示す。
論文 参考訳(メタデータ) (2023-05-30T17:59:26Z) - Combining Automatic Speaker Verification and Prosody Analysis for
Synthetic Speech Detection [15.884911752869437]
本稿では,人間の声の2つの高レベルな意味的特性を組み合わせた合成音声検出手法を提案する。
一方, 話者識別手法に着目し, 自動話者検証タスクの最先端手法を用いて抽出した話者埋め込みとして表現する。
一方、リズム、ピッチ、アクセントの変化を意図した音声韻律は、特殊なエンコーダによって抽出される。
論文 参考訳(メタデータ) (2022-10-31T11:03:03Z) - Improving Speech Enhancement through Fine-Grained Speech Characteristics [42.49874064240742]
そこで本稿では,強調信号の知覚的品質と自然性の向上を目的とした音声強調手法を提案する。
まず,音声品質と相関する重要な音響パラメータを同定する。
次に,これらの特徴について,クリーン音声と拡張音声との差を低減することを目的とした目的関数を提案する。
論文 参考訳(メタデータ) (2022-07-01T07:04:28Z) - Audio-visual multi-channel speech separation, dereverberation and
recognition [70.34433820322323]
本稿では,音声-視覚的多チャンネル音声分離,デバーベレーション,認識手法を提案する。
音声を用いた場合の視覚的モダリティの利点は、2つのニューラルデバーベレーションアプローチでのみ示される。
LRS2データセットを用いて行った実験から,提案手法がベースラインよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-04-05T04:16:03Z) - Spectro-Temporal Deep Features for Disordered Speech Assessment and
Recognition [65.25325641528701]
音声スペクトルのSVD分解による深い特徴を埋め込んだ新しいスペクトル時空間ベースを提案する。
UASpeechコーパスで行った実験では、提案された分光時間深部特徴適応システムは、データ拡張の有無にかかわらず、ワードエラー率(WER)を最大263%(相対8.6%)削減することで、ベースラインi-適応を一貫して上回ったことが示唆された。
論文 参考訳(メタデータ) (2022-01-14T16:56:43Z) - Voice Quality and Pitch Features in Transformer-Based Speech Recognition [3.921076451326107]
本研究では,トランスフォーマーに基づくASRモデルに対して,音声品質とピッチ特徴を完全かつ個別に取り入れることの効果について検討した。
We found mean Word Error Rate relative reductions to up 5.6% with the LibriSpeech benchmark。
論文 参考訳(メタデータ) (2021-12-21T17:49:06Z) - Data-driven Detection and Analysis of the Patterns of Creaky Voice [13.829936505895692]
クレーキー音声はフレーズ境界マーカーとしてよく使われる品質である。
難解な音声の自動検出とモデリングは、音声技術への応用に影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2020-05-31T13:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。