Entangling non planar molecules via inversion doublet transition with
negligible spontaneous emission
- URL: http://arxiv.org/abs/2001.00829v1
- Date: Fri, 3 Jan 2020 13:40:33 GMT
- Title: Entangling non planar molecules via inversion doublet transition with
negligible spontaneous emission
- Authors: Isabel Gonzalo and Miguel A. Ant\'on
- Abstract summary: We analyze theoretically the entanglement between two non-planar and light identical molecules.
The peculiarity of this system lies in the simplicity of this type of molecular system.
Although the data used are those of the $NH_3$ molecule, other molecules could present the same advantageous features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze theoretically the entanglement between two non-planar and light
identical molecules (e.g., pyramidal as $NH_3$) that present inversion doubling
due to the internal spatial inversion of their nuclear conformations by
tunneling. The peculiarity of this system lies in the simplicity of this type
of molecular system in which two near levels can be connected by allowed
electric dipole transition with considerable value of the dipole moment
transition and negligible spontaneous emission because the transition is in the
microwave or far-infrared range. These properties give place to entanglement
states oscillating by free evolution with frequency determined by the
dipole-dipole interaction and negligible spontaneous decay, which allows to
consider an efficient quantum Zeno effect by frequent measurements of one of
the entangled states. If the molecules are initially both in the upper (or
lower) eigenstate, the system evolves under an external radiation field, which
can induce oscillations of the generated entangled states, with frequency of
the order of the Rabi frequency of the field. For a certain detuning, a
symmetric entangled state, eigenstate of the collective system can be
populated, and given its negligible spontaneous emission, could be maintained
for a time only limited by external decoherence processes which could be
minimized. Although the data used are those of the $NH_3$ molecule, other
molecules could present the same advantageous features.
Related papers
- Enhanced control of single-molecule emission frequency and spectral diffusion [0.0]
Stark effect provides a powerful method to shift the spectra of molecules, atoms and electronic transitions in general.
We provide experimental evidence of this trend, using molecular quantum emitters in the solid state cooled down to liquid helium.
Based on the anisotropy of the molecule's polarizability, our two-dimensional control of the local electric field allows not only to tune the emitter's frequency but also to sensibly suppress the spectral instabilities associated to field fluctuations.
arXiv Detail & Related papers (2024-09-03T12:40:40Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Self-Organization in Cold Atoms Mediated by Diffractive Coupling [0.0]
This article discusses self-organization in cold atoms via light-mediated interactions induced by feedback from a single retro-reflecting mirror.
We elucidate how diffractive ripples couple sites on the self-induced atomic lattice.
The interaction can be tailored to operate on external degrees of freedom leading to atomic crystallization for thermal atoms and supersolids for a quantum degenerate gas, or on internal degrees of freedom like populations of the excited state or Zeeman sublevels.
arXiv Detail & Related papers (2021-05-18T08:04:39Z) - Beyond the Rabi model: light interactions with polar atomic systems in a
cavity [0.0]
The Rabi Hamiltonian describes the interaction between a two-level atomic system and a single cavity mode of the electromagnetic field.
In this work we consider the most general Rabi model, incorporating the effects of permanent atomic electric dipole moments.
arXiv Detail & Related papers (2021-03-20T19:54:17Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Propagation of optically tunable coherent radiation in a gas of polar
molecules [0.0]
Two-level molecular systems without inversion symmetry are considered as all-optically tunable sources of coherent radiation in the microwave domain.
A theoretical model and a numerical toolbox are developed to confirm the main finding.
We find that even though decoherence mechanisms such as spontaneous emission may damp the output field, a scenario based on pulsed illumination yields a coherent, pulsed output of temporal width.
arXiv Detail & Related papers (2020-02-13T12:16:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.