Propagation of optically tunable coherent radiation in a gas of polar
molecules
- URL: http://arxiv.org/abs/2002.05469v2
- Date: Mon, 7 Dec 2020 12:40:20 GMT
- Title: Propagation of optically tunable coherent radiation in a gas of polar
molecules
- Authors: Piotr G{\l}adysz, Piotr Wcis{\l}o and Karolina S{\l}owik
- Abstract summary: Two-level molecular systems without inversion symmetry are considered as all-optically tunable sources of coherent radiation in the microwave domain.
A theoretical model and a numerical toolbox are developed to confirm the main finding.
We find that even though decoherence mechanisms such as spontaneous emission may damp the output field, a scenario based on pulsed illumination yields a coherent, pulsed output of temporal width.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherent, optically dressed media composed of two-level molecular systems
without inversion symmetry are considered as all-optically tunable sources of
coherent radiation in the microwave domain. A theoretical model and a numerical
toolbox are developed to confirm the main finding: the generation of a
low-frequency radiation, and the buildup and propagation dynamics of such
low-frequency signals in a medium of polar molecules in a gas phase. The
physical mechanism of the signal generation relies on the permanent dipole
moment characterizing systems without inversion symmetry. The molecules are
polarized with a DC electric field yielding a permanent electric dipole moment
in the laboratory frame; the direction and magnitude of the moment depend on
the molecular state. As the system is resonantly driven, the dipole moment
oscillates at the Rabi frequency and, hence, generates microwave radiation. We
demonstrate the tuning capability of the output signal frequency with the drive
amplitude and detuning. We find that even though decoherence mechanisms such as
spontaneous emission may damp the output field, a scenario based on pulsed
illumination yields a coherent, pulsed output of tunable temporal width.
Finally, we discuss experimental scenarios exploiting rotational levels of
gaseous ensembles of heteronuclear diatomic molecules.
Related papers
- Enhanced control of single-molecule emission frequency and spectral diffusion [0.0]
Stark effect provides a powerful method to shift the spectra of molecules, atoms and electronic transitions in general.
We provide experimental evidence of this trend, using molecular quantum emitters in the solid state cooled down to liquid helium.
Based on the anisotropy of the molecule's polarizability, our two-dimensional control of the local electric field allows not only to tune the emitter's frequency but also to sensibly suppress the spectral instabilities associated to field fluctuations.
arXiv Detail & Related papers (2024-09-03T12:40:40Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Radio-frequency manipulation of state populations in an entangled
fluorine-muon-fluorine system [0.0]
Entangled spin states are created by implanting muons into single crystal LiY0.95Ho0.05F4.
The resulting states have well-defined energy levels allowing experimental manipulation of the state populations.
arXiv Detail & Related papers (2022-04-11T13:09:36Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Ultrafast modulation of vibrational polaritons for controlling the
quantum field statistics at mid-infrared frequencies [0.0]
We show that by coupling molecular vibrations with a confined mid-infrared cavity vacuum, the photocount and quadrature field statistics of the cavity field can be reversibly manipulated over sub-picosecond timescales.
This work paves the way for the development of molecule-based mid-infrared quantum optical devices at room temperature.
arXiv Detail & Related papers (2021-11-12T14:06:58Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Entangling non planar molecules via inversion doublet transition with
negligible spontaneous emission [0.0]
We analyze theoretically the entanglement between two non-planar and light identical molecules.
The peculiarity of this system lies in the simplicity of this type of molecular system.
Although the data used are those of the $NH_3$ molecule, other molecules could present the same advantageous features.
arXiv Detail & Related papers (2020-01-03T13:40:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.