Deep Learning-Based Intrusion Detection System for Advanced Metering
Infrastructure
- URL: http://arxiv.org/abs/2001.00916v1
- Date: Tue, 31 Dec 2019 21:06:20 GMT
- Title: Deep Learning-Based Intrusion Detection System for Advanced Metering
Infrastructure
- Authors: Zakaria El Mrabet, Mehdi Ezzari, Hassan Elghazi, Badr Abou El Majd
- Abstract summary: The smart grid is exposed to a wide variety of threats that could be translated into cyber-attacks.
In this paper, we develop a deep learning-based intrusion detection system to defend against cyber-attacks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart grid is an alternative solution of the conventional power grid which
harnesses the power of the information technology to save the energy and meet
today's environment requirements. Due to the inherent vulnerabilities in the
information technology, the smart grid is exposed to a wide variety of threats
that could be translated into cyber-attacks. In this paper, we develop a deep
learning-based intrusion detection system to defend against cyber-attacks in
the advanced metering infrastructure network. The proposed machine learning
approach is trained and tested extensively on an empirical industrial dataset
which is composed of several attack categories including the scanning, buffer
overflow, and denial of service attacks. Then, an experimental comparison in
terms of detection accuracy is conducted to evaluate the performance of the
proposed approach with Naive Bayes, Support Vector Machine, and Random Forest.
The obtained results suggest that the proposed approaches produce optimal
results comparing to the other algorithms. Finally, we propose a network
architecture to deploy the proposed anomaly-based intrusion detection system
across the Advanced Metering Infrastructure network. In addition, we propose a
network security architecture composed of two types of Intrusion detection
system types, Host and Network-based, deployed across the Advanced Metering
Infrastructure network to inspect the traffic and detect the malicious one at
all the levels.
Related papers
- Distributing Intelligence in 6G Programmable Data Planes for Effective In-Network Deployment of an Active Intrusion Detection System [2.563180814294141]
This research aims to propose a disruptive paradigm in which devices in a typical data plane of a future programmable network have %classification and anomaly detection capabilities and cooperate in a fully distributed fashion to act as an ML-enabled Active Intrusion Detection System "embedded" into the network.
The reported proof-of-concept experiments demonstrate that the proposed paradigm allows working effectively and with a good level of precision while occupying overall less CPU and RAM resources of the devices involved.
arXiv Detail & Related papers (2024-10-31T15:14:15Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - An Approach to Abstract Multi-stage Cyberattack Data Generation for ML-Based IDS in Smart Grids [2.5655761752240505]
We propose a method to generate synthetic data using a graph-based approach for training machine learning models in smart grids.
We use an abstract form of multi-stage cyberattacks defined via graph formulations and simulate the propagation behavior of attacks in the network.
arXiv Detail & Related papers (2023-12-21T11:07:51Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on industrial control systems.
The framework has a hybrid design that combines a variational autoencoder (VAE), a recurrent neural network (RNN), and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2023-10-10T19:07:53Z) - FedDiSC: A Computation-efficient Federated Learning Framework for Power
Systems Disturbance and Cyber Attack Discrimination [1.0621485365427565]
This paper proposes a novel Federated Learning-based privacy-preserving and communication-efficient attack detection framework, known as FedDiSC.
We put forward a representation learning-based Deep Auto-Encoder network to accurately detect power system and cybersecurity anomalies.
To adapt our proposed framework to the timeliness of real-world cyberattack detection in SGs, we leverage the use of a gradient privacy-preserving quantization scheme known as DP-SIGNSGD.
arXiv Detail & Related papers (2023-04-07T13:43:57Z) - Machine-learned Adversarial Attacks against Fault Prediction Systems in
Smart Electrical Grids [17.268321134222667]
This study investigates the challenges associated with the security of machine learning (ML) applications in the smart grid scenario.
We demonstrate first that the deep neural network method used in the smart grid is susceptible to adversarial perturbation.
Then, we highlight how studies on fault localization and type classification illustrate the weaknesses of present ML algorithms in smart grids to various adversarial attacks.
arXiv Detail & Related papers (2023-03-28T10:19:03Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.