Distributing Intelligence in 6G Programmable Data Planes for Effective In-Network Deployment of an Active Intrusion Detection System
- URL: http://arxiv.org/abs/2410.24013v1
- Date: Thu, 31 Oct 2024 15:14:15 GMT
- Title: Distributing Intelligence in 6G Programmable Data Planes for Effective In-Network Deployment of an Active Intrusion Detection System
- Authors: Mattia G. Spina, Floriano De Rango, Edoardo Scalzo, Francesca Guerriero, Antonio Iera,
- Abstract summary: This research aims to propose a disruptive paradigm in which devices in a typical data plane of a future programmable network have %classification and anomaly detection capabilities and cooperate in a fully distributed fashion to act as an ML-enabled Active Intrusion Detection System "embedded" into the network.
The reported proof-of-concept experiments demonstrate that the proposed paradigm allows working effectively and with a good level of precision while occupying overall less CPU and RAM resources of the devices involved.
- Score: 2.563180814294141
- License:
- Abstract: The problem of attacks on new generation network infrastructures is becoming increasingly relevant, given the widening of the attack surface of these networks resulting from the greater number of devices that will access them in the future (sensors, actuators, vehicles, household appliances, etc.). Approaches to the design of intrusion detection systems must evolve and go beyond the traditional concept of perimeter control to build on new paradigms that exploit the typical characteristics of future 5G and 6G networks, such as in-network computing and intelligent programmable data planes. The aim of this research is to propose a disruptive paradigm in which devices in a typical data plane of a future programmable network have %classification and anomaly detection capabilities and cooperate in a fully distributed fashion to act as an ML-enabled Active Intrusion Detection System "embedded" into the network. The reported proof-of-concept experiments demonstrate that the proposed paradigm allows working effectively and with a good level of precision while occupying overall less CPU and RAM resources of the devices involved.
Related papers
- Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks [4.836070911511429]
This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks.
Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%.
arXiv Detail & Related papers (2024-08-26T06:57:22Z) - Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
Traditional machine learning-based intrusion detection systems (ML-IDS) possess limitations such as the requirement for labeled data.
Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions.
This paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that learns common representations of distributed non-i.i.d. datasets.
arXiv Detail & Related papers (2024-07-10T07:23:21Z) - Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
Digital twins (DTs) embody real-time monitoring, predictive, and enhanced decision-making capabilities.
This study investigates the security challenges in distributed network DT systems, which potentially undermine the reliability of subsequent network applications.
arXiv Detail & Related papers (2024-07-02T03:32:09Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
Intrusion detection systems play a significant role in ensuring security and privacy of smart devices.
The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system.
arXiv Detail & Related papers (2021-06-16T13:13:04Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
We build the world's first true-data testbed for 5G/B5G intelligent network (TTIN)
TTIN comprises 5G/B5G on-site experimental networks, data acquisition & data warehouse, and AI engine & network optimization.
This paper elaborates on the system architecture and module design of TTIN.
arXiv Detail & Related papers (2020-11-26T06:42:36Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Deep Learning-Based Intrusion Detection System for Advanced Metering
Infrastructure [0.0]
The smart grid is exposed to a wide variety of threats that could be translated into cyber-attacks.
In this paper, we develop a deep learning-based intrusion detection system to defend against cyber-attacks.
arXiv Detail & Related papers (2019-12-31T21:06:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.