Human-robot co-manipulation of extended objects: Data-driven models and
control from analysis of human-human dyads
- URL: http://arxiv.org/abs/2001.00991v1
- Date: Fri, 3 Jan 2020 21:23:12 GMT
- Title: Human-robot co-manipulation of extended objects: Data-driven models and
control from analysis of human-human dyads
- Authors: Erich Mielke, Eric Townsend, David Wingate, and Marc D. Killpack
- Abstract summary: We use data from human-human dyad experiments to determine motion intent which we use for a physical human-robot co-manipulation task.
We develop a deep neural network based on motion data from human-human trials to predict human intent based on past motion.
- Score: 2.7036498789349244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human teams are able to easily perform collaborative manipulation tasks.
However, for a robot and human to simultaneously manipulate an extended object
is a difficult task using existing methods from the literature. Our approach in
this paper is to use data from human-human dyad experiments to determine motion
intent which we use for a physical human-robot co-manipulation task. We first
present and analyze data from human-human dyads performing co-manipulation
tasks. We show that our human-human dyad data has interesting trends including
that interaction forces are non-negligible compared to the force required to
accelerate an object and that the beginning of a lateral movement is
characterized by distinct torque triggers from the leader of the dyad. We also
examine different metrics to quantify performance of different dyads. We also
develop a deep neural network based on motion data from human-human trials to
predict human intent based on past motion. We then show how force and motion
data can be used as a basis for robot control in a human-robot dyad. Finally,
we compare the performance of two controllers for human-robot co-manipulation
to human-human dyad performance.
Related papers
- Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
We introduce a full-stack system for humanoids to learn motion and autonomous skills from human data.
We first train a low-level policy in simulation via reinforcement learning using existing 40-hour human motion datasets.
We then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously.
arXiv Detail & Related papers (2024-06-15T00:41:34Z) - InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions [7.574421886354134]
InteRACT architecture pre-trains a conditional intent prediction model on large human-human datasets and fine-tunes on a small human-robot dataset.
We evaluate on a set of real-world collaborative human-robot manipulation tasks and show that our conditional model improves over various marginal baselines.
arXiv Detail & Related papers (2023-11-21T19:15:17Z) - SynH2R: Synthesizing Hand-Object Motions for Learning Human-to-Robot
Handovers [37.49601724575655]
Vision-based human-to-robot handover is an important and challenging task in human-robot interaction.
We introduce a framework that can generate plausible human grasping motions suitable for training the robot.
This allows us to generate synthetic training and testing data with 100x more objects than previous work.
arXiv Detail & Related papers (2023-11-09T18:57:02Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
This work investigates the perception of object manipulations performed with a communicative intent by two robots.
We designed the robots' movements to communicate carefulness or not during the transportation of objects.
arXiv Detail & Related papers (2022-08-03T13:26:52Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.