Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition
- URL: http://arxiv.org/abs/2407.00299v4
- Date: Mon, 21 Oct 2024 15:56:23 GMT
- Title: Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition
- Authors: Shengcheng Luo, Quanquan Peng, Jun Lv, Kaiwen Hong, Katherine Rose Driggs-Campbell, Cewu Lu, Yong-Lu Li,
- Abstract summary: We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
- Score: 48.65867987106428
- License:
- Abstract: Employing a teleoperation system for gathering demonstrations offers the potential for more efficient learning of robot manipulation. However, teleoperating a robot arm equipped with a dexterous hand or gripper, via a teleoperation system presents inherent challenges due to the task's high dimensionality, complexity of motion, and differences between physiological structures. In this study, we introduce a novel system for joint learning between human operators and robots, that enables human operators to share control of a robot end-effector with a learned assistive agent, simplifies the data collection process, and facilitates simultaneous human demonstration collection and robot manipulation training. As data accumulates, the assistive agent gradually learns. Consequently, less human effort and attention are required, enhancing the efficiency of the data collection process. It also allows the human operator to adjust the control ratio to achieve a trade-off between manual and automated control. We conducted experiments in both simulated environments and physical real-world settings. Through user studies and quantitative evaluations, it is evident that the proposed system could enhance data collection efficiency and reduce the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks. \textit{For more details, please refer to our webpage https://norweig1an.github.io/HAJL.github.io/.
Related papers
- Zero-Cost Whole-Body Teleoperation for Mobile Manipulation [8.71539730969424]
MoMa-Teleop is a novel teleoperation method that delegates the base motions to a reinforcement learning agent.
We demonstrate that our approach results in a significant reduction in task completion time across a variety of robots and tasks.
arXiv Detail & Related papers (2024-09-23T15:09:45Z) - VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections [10.49712834719005]
We propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL.
Our approach leverages affordable hardware and visual processing techniques to collect demonstrations.
We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments.
arXiv Detail & Related papers (2024-07-30T23:29:47Z) - Open-TeleVision: Teleoperation with Immersive Active Visual Feedback [17.505318269362512]
Open-TeleVision allows operators to actively perceive the robot's surroundings in a stereoscopic manner.
The system mirrors the operator's arm and hand movements on the robot, creating an immersive experience.
We validate the effectiveness of our system by collecting data and training imitation learning policies on four long-horizon, precise tasks.
arXiv Detail & Related papers (2024-07-01T17:55:35Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - PATO: Policy Assisted TeleOperation for Scalable Robot Data Collection [19.04536551595612]
Policy Assisted TeleOperation (PATO) is a system which automates part of the demonstration collection process using a learned assistive policy.
PATO autonomously executes repetitive behaviors in data collection and asks for human input only when it is uncertain about which subtask or behavior to execute.
arXiv Detail & Related papers (2022-12-09T07:38:09Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.