論文の概要: The Pedestrian Patterns Dataset
- arxiv url: http://arxiv.org/abs/2001.01816v1
- Date: Mon, 6 Jan 2020 23:58:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 02:54:33.428111
- Title: The Pedestrian Patterns Dataset
- Title(参考訳): 歩行者パターンデータセット
- Authors: Kasra Mokhtari and Alan R. Wagner
- Abstract要約: データセットは、異なる特定のタイムスロットから1週間、同じ3つのルートを繰り返すことで収集された。
データセットの目的は、横断するルートに沿って異なる時間に、社会的および歩行者の行動パターンをキャプチャすることである。
- 参考スコア(独自算出の注目度): 11.193504036335503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the pedestrian patterns dataset for autonomous driving. The
dataset was collected by repeatedly traversing the same three routes for one
week starting at different specific timeslots. The purpose of the dataset is to
capture the patterns of social and pedestrian behavior along the traversed
routes at different times and to eventually use this information to make
predictions about the risk associated with autonomously traveling along
different routes. This dataset contains the Full HD videos and GPS data for
each traversal. Fast R-CNN pedestrian detection method is applied to the
captured videos to count the number of pedestrians at each video frame in order
to assess the density of pedestrians along a route. By providing this
large-scale dataset to researchers, we hope to accelerate autonomous driving
research not only to estimate the risk, both to the public and to the
autonomous vehicle but also accelerate research on long-term vision-based
localization of mobile robots and autonomous vehicles of the future.
- Abstract(参考訳): 本稿では,自動運転のための歩行者パターンデータセットを提案する。
データセットは、異なる特定のタイムスロットから1週間、同じ3つのルートを繰り返すことで収集された。
このデータセットの目的は、異なるルートを横断する社会行動と歩行者行動のパターンを捉え、最終的にこの情報を使用して、異なるルートを自律的に走行する際のリスクを予測することである。
このデータセットには、各トラバーサルのフルHDビデオとGPSデータが含まれている。
得られた映像に高速なR-CNN歩行者検出手法を適用し,各映像フレームにおける歩行者数をカウントし,経路に沿った歩行者の密度を評価する。
この大規模なデータセットを研究者に提供することで、公共と自動運転車の両方のリスクを見積もるだけでなく、将来の移動ロボットと自動運転車の長期的なビジョンに基づくローカライゼーションの研究を加速したいと考えています。
関連論文リスト
- Pedestrian Environment Model for Automated Driving [54.16257759472116]
歩行者の位置とポーズ情報を含む環境モデルを提案する。
画像から人間のポーズ推定器を用いて骨格情報を抽出する。
位置の3D情報を得るために,車両の位置と合わせて連続するフレームからデータを集約する。
論文 参考訳(メタデータ) (2023-08-17T16:10:58Z) - Navigating Uncertainty: The Role of Short-Term Trajectory Prediction in
Autonomous Vehicle Safety [3.3659635625913564]
我々は,CARLAシミュレータを用いた短期軌道予測タスクのためのデータセットを開発した。
このデータセットは広く、複雑なシナリオとして、歩行者が道路を横断し、車両が乗り越える、と考えられています。
畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)を用いた終端から終端までの短期軌道予測モデルも開発されている。
論文 参考訳(メタデータ) (2023-07-11T14:28:33Z) - aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving
with Long-Range Perception [0.0]
このデータセットは、同期して校正されたLiDAR、カメラ、および360度の視野をカバーするレーダーセンサーを備えた176のシーンで構成されている。
収集したデータは、昼間、夜、雨の間に、高速道路、都市、郊外で撮影された。
我々は3次元物体検出のための一次元・多モードベースラインモデルを訓練した。
論文 参考訳(メタデータ) (2022-11-17T10:19:59Z) - Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions [0.0]
我々は、新しいデータ収集プロセスを通じて、堅牢な自律運転を可能にする新しいデータセットを提案する。
データセットには、高精度GPS/INSとともに、カメラとLiDARセンサーからの画像と点雲が含まれている。
道路・オブジェクトのアモーダルセグメンテーションにおけるベースラインの性能を解析することにより,このデータセットの特異性を実証する。
論文 参考訳(メタデータ) (2022-08-01T22:55:32Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
既存の手法では、純粋な視覚的マッチングや時間的制約を考慮することが多いが、カメラネットワークの空間情報は無視する。
本稿では,時間的情報と空間的情報を統合したクロスカメラ生成に基づく歩行者検索フレームワークを提案する。
本手法の有効性を検証するため,最初のカメラ横断歩行者軌跡データセットを構築した。
論文 参考訳(メタデータ) (2022-04-27T13:10:48Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - ROAD: The ROad event Awareness Dataset for Autonomous Driving [16.24547478826027]
ROADは、自動運転車が道路イベントを検出する能力をテストするように設計されている。
22のビデオで構成され、各道路イベントのイメージプレーンの位置を示すバウンディングボックスがアノテートされています。
また、RetinaNetに基づいて、オンライン道路イベント認識のための新しいインクリメンタルアルゴリズムをベースラインとして提供します。
論文 参考訳(メタデータ) (2021-02-23T09:48:56Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z) - Universal Embeddings for Spatio-Temporal Tagging of Self-Driving Logs [72.67604044776662]
我々は、生のセンサデータから、自動運転シーンの時間的タグ付けの問題に取り組む。
提案手法では,全てのタグに対する普遍的な埋め込みを学習し,多くの属性を効率的にタグ付けし,限られたデータで新しい属性を高速に学習する。
論文 参考訳(メタデータ) (2020-11-12T02:18:16Z) - Traffic Control Gesture Recognition for Autonomous Vehicles [4.336324036790157]
本稿では,3Dボディスケルトン入力に基づくデータセットを導入し,時間ステップ毎に交通制御のジェスチャー分類を行う。
私たちのデータセットは、複数のアクターから250のシーケンスで構成されています。
論文 参考訳(メタデータ) (2020-07-31T13:40:41Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。