Transparency in a periodic chain of quantum emitters strongly coupled to
a waveguide
- URL: http://arxiv.org/abs/2001.01901v1
- Date: Tue, 7 Jan 2020 05:59:57 GMT
- Title: Transparency in a periodic chain of quantum emitters strongly coupled to
a waveguide
- Authors: Debsuvra Mukhopadhyay and Girish S. Agarwal
- Abstract summary: We show the emergence of transparent behavior in a chain of periodically spaced non-identical quantums emitters coupled to a waveguide.
We show, how the spectral behavior hinges significantly on the relative detunings between the atoms as compared to the decay rate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate the emergence of transparent behavior in a chain of
periodically spaced non-identical quantums emitters coupled to a waveguide, in
the special case when the inter-atomic separation is a half-integral multiple
of the resonant wavelength, i.e. $kL$ is an integral multiple of $\pi$, with
$k$ being the spatial frequency and $L$ the spatial periodicity. When equal but
opposite frequency detunings are assigned in pairs to a system of even number
of atoms, perfect transmission ensues. When the chain size is odd, a similar
assignment leads to the disappearance of collective effects as the odd atom
determines the spectral behavior. We also manifest the robustness of these
features against dissipative effects and show, how the spectral behavior hinges
significantly on the relative detunings between the atoms as compared to the
decay rate. A key distinction from the phenomenon of Electromagnetically
Induced Transparency (EIT) is that in the waveguide case, the presence of an
intrinsic waveguide mediated phase coupling between the atoms strongly affects
the transport properties. Furthermore, while reciprocity in single-photon
transport does not generally hold due to the phase coupling, we observe an
interesting exception for $kL = n\pi$ at which the waveguide demonstrates
reciprocal behavior with regard to both the transmission and reflection
coefficients.
Related papers
- Tunable photon scattering by an atom dimer coupled to a band edge of a photonic crystal waveguide [0.0]
Quantum emitters trapped near photonic crystal waveguides have emerged as an exciting platform for realizing novel quantum matter-light interfaces.
We study tunable photon scattering in a photonic crystal waveguide coupled to an atom dimer with an arbitrary spatial separation.
arXiv Detail & Related papers (2024-09-30T13:57:58Z) - Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields [11.961708412157757]
Experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity.
The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator.
arXiv Detail & Related papers (2024-03-17T08:48:30Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Unconventional Quantum Electrodynamics with Hofstadter-Ladder Waveguide [5.693517450178467]
We propose a novel quantum electrodynamics (QED) platform where quantum emitters interact with a Hofstadter-ladder waveguide.
By assuming emitter's frequency to be resonant with the lower band, we find that the spontaneous emission is chiral.
Due to quantum interference, we find that both the emitter-waveguide interaction and the amplitudes of bound states are periodically modulated by giant emitter's size.
arXiv Detail & Related papers (2022-03-21T07:07:26Z) - Quantum dynamics of disordered arrays of interacting superconducting
qubits: signatures of quantum collective states [0.0]
We study theoretically the collective quantum dynamics occurring in superconducting qubits arrays.
Even a weak interaction between qubits can overcome the disorder with a simultaneous formation of the collective excited states.
arXiv Detail & Related papers (2021-11-29T17:35:43Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Non-exponential decay of a collective excitation in an atomic ensemble
coupled to a one-dimensional waveguide [0.0]
We study the dynamics of a single excitation coherently shared amongst an ensemble of atoms and coupled to a one-dimensional wave guide.
The coupling between the matter and the light field gives rise to collective phenomena such as superradiant states.
arXiv Detail & Related papers (2020-06-26T13:26:35Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.