Many-Body Quantum Optics in a Bose-Hubbard Waveguide
- URL: http://arxiv.org/abs/2505.02892v1
- Date: Mon, 05 May 2025 18:00:00 GMT
- Title: Many-Body Quantum Optics in a Bose-Hubbard Waveguide
- Authors: Federico Roccati,
- Abstract summary: We study the collective decay and coherent interactions of quantum emitters coupled to a one-dimensional Bose-Hubbard waveguide.<n>We show that photon-photon interactions alone can trigger a superradiant burst, independent of emitter spacing and transition frequency.<n>Our work bridges many-body physics and waveguide QED, revealing how photonic many-body states shape emitter dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Waveguide quantum electrodynamics (QED) studies the interaction between quantum emitters and guided photons in one-dimension. When the waveguide hosts interacting photons, it becomes a platform to explore many-body quantum optics. However, the influence of photonic correlations on emitter dynamics remains poorly understood. In this work, we study the collective decay and coherent interactions of quantum emitters coupled to a one-dimensional Bose-Hubbard waveguide, an array of coupled photonic modes with repulsive on-site interactions that supports superfluid and Mott insulating phases. We show that photon-photon interactions alone can trigger a superradiant burst, independent of emitter spacing and transition frequency. In the off-resonant regime, emitters exhibit two distinct types of mediated interactions: delocalized superfluid excitations yield distance-independent couplings, while Mott-insulator quasiparticles generate short-range interactions mediated by doublons and holons. Our work bridges many-body physics and waveguide QED, revealing how photonic many-body states shape emitter dynamics.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Cavity-Mediated Collective Momentum-Exchange Interactions [0.0]
We realize for the first time momentum-exchange interactions in which atoms exchange their momentum states via collective emission and absorption of photons from a common cavity mode.
The momentum-exchange interaction leads to an observed all-to-all Ising-like interaction in a matter-wave interferometer, which is useful for entanglement generation.
arXiv Detail & Related papers (2023-04-03T23:12:58Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Unconventional Quantum Electrodynamics with Hofstadter-Ladder Waveguide [5.693517450178467]
We propose a novel quantum electrodynamics (QED) platform where quantum emitters interact with a Hofstadter-ladder waveguide.
By assuming emitter's frequency to be resonant with the lower band, we find that the spontaneous emission is chiral.
Due to quantum interference, we find that both the emitter-waveguide interaction and the amplitudes of bound states are periodically modulated by giant emitter's size.
arXiv Detail & Related papers (2022-03-21T07:07:26Z) - Moir\'e-induced optical non-linearities: Single and multi-photon
resonances [0.0]
Moir'e excitons promise a new platform with which to generate and manipulate hybrid quantum phases of light and matter.
We show that the steady states exhibit a rich phase diagram with pronounced bi-stabilities governed by multi-photon resonances.
In the presence of an incoherent pumping of excitons we find that the system can realise one- and multi-photon lasers.
arXiv Detail & Related papers (2021-08-13T11:47:44Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.