Gravitational reduction of the wave function based on Bohmian quantum
potential
- URL: http://arxiv.org/abs/2001.01905v1
- Date: Tue, 7 Jan 2020 06:22:52 GMT
- Title: Gravitational reduction of the wave function based on Bohmian quantum
potential
- Authors: Faramarz Rahmani, Mehdi Golshani, Ghadir Jafari
- Abstract summary: In objective gravitational reduction of the wave function of a quantum system, the classical limit of the system is obtained in terms of the objective properties of the system.
In Bohmian quantum mechanics the usual criterion for getting classical limit is the vanishing of the quantum potential or the quantum force of the system.
An interesting connection will be made between Bohmian concepts and gravitational concepts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In objective gravitational reduction of the wave function of a quantum
system, the classical limit of the system is obtained in terms of the objective
properties of the system. On the other hand, in Bohmian quantum mechanics the
usual criterion for getting classical limit is the vanishing of the quantum
potential or the quantum force of the system, which suffers from the lack of an
objective description. In this regard, we investigated the usual criterion of
getting the classical limit of a free particle in Bohmian quantum mechanics.
Then we argued that how it is possible to have an objective gravitational
classical limit related to the Bohmian mechanical concepts like quantum
potential or quantum force. Also we derived a differential equation related to
the wave function reduction. An interesting connection will be made between
Bohmian concepts and gravitational concepts.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - A dynamic programming interpretation of quantum mechanics [0.0]
We introduce a transformation of the quantum phase $S'=S+frachbar2logrho$, which converts the deterministic equations of quantum mechanics into the Lagrangian reference frame of particles.
We show that the quantum potential can be removed from the transformed quantum Hamilton-Jacobi equations if they are solved as Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-08T18:43:40Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - On the gravitization of quantum mechanics and wave function reduction in
Bohmian quantum mechanics [0.0]
This paper uses Einstein's equivalence principle in the description of the gravity-induced wave function reduction in the framework of Bohmian causal quantum theory.
The critical mass for transition from the quantum world to the classical world, the reduction time of the wave function and the temperature that corresponds to the Unruh temperature will be obtained.
arXiv Detail & Related papers (2022-09-01T14:58:35Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Countering a fundamental law of attraction with quantum wavepacket
engineering [0.0]
Bohmian mechanics was designed to give rise to predictions identical to those derived by standard quantum mechanics.
We show that this interpretation of quantum theory naturally leads to the derivation of interesting new phenomena.
Specifically, we demonstrate how the fundamental Casimir-Polder force, by which atoms are attracted to a surface, may be temporarily suppressed by utilizing a specially designed quantum potential.
arXiv Detail & Related papers (2021-01-27T13:24:43Z) - Classical limit of quantum mechanics for damped driven oscillatory
systems: Quantum-classical correspondence [0.0]
We develop a quantum formalism on the basis of a linear-invariant theorem.
We illustrate the correspondence of the quantum energy with the classical one in detail.
arXiv Detail & Related papers (2020-10-18T12:12:01Z) - Evaluating Bohm's quantum force in the scattering process by a classical
potential [0.0]
We show an application of the de Broglie-Bohm Quantum Theory of Motion as a powerful tool for evaluating Bohm's quantum force in the scattering process of a Gaussian wavepacket by a classical Eckart potential.
arXiv Detail & Related papers (2020-06-15T16:12:39Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.