Automated Pavement Crack Segmentation Using U-Net-based Convolutional
Neural Network
- URL: http://arxiv.org/abs/2001.01912v4
- Date: Tue, 30 Jun 2020 14:43:42 GMT
- Title: Automated Pavement Crack Segmentation Using U-Net-based Convolutional
Neural Network
- Authors: Stephen L. H. Lau, Edwin K. P. Chong, Xu Yang, and Xin Wang
- Abstract summary: We propose a deep learning technique based on a convolutional neural network to perform segmentation tasks on pavement crack images.
Our approach requires minimal feature engineering compared to other machine learning techniques.
Our method achieves an F1 score of 96% on the CFD dataset and 73% on the Crack500 dataset, outperforming other algorithms tested on these datasets.
- Score: 10.48658033897047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated pavement crack image segmentation is challenging because of
inherent irregular patterns, lighting conditions, and noise in images.
Conventional approaches require a substantial amount of feature engineering to
differentiate crack regions from non-affected regions. In this paper, we
propose a deep learning technique based on a convolutional neural network to
perform segmentation tasks on pavement crack images. Our approach requires
minimal feature engineering compared to other machine learning techniques. We
propose a U-Net-based network architecture in which we replace the encoder with
a pretrained ResNet-34 neural network. We use a "one-cycle" training schedule
based on cyclical learning rates to speed up the convergence. Our method
achieves an F1 score of 96% on the CFD dataset and 73% on the Crack500 dataset,
outperforming other algorithms tested on these datasets. We perform ablation
studies on various techniques that helped us get marginal performance boosts,
i.e., the addition of spatial and channel squeeze and excitation (SCSE)
modules, training with gradually increasing image sizes, and training various
neural network layers with different learning rates.
Related papers
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
We propose the use of keypoint frequency selective mesh-to-grid resampling (FSMR) for the processing of input data for neural networks.
We show that depending on the network architecture and classification task the application of FSMR during training aids learning process.
The classification accuracy can be increased by up to 4.31 percentage points for ResNet50 and the Oxflower17 dataset.
arXiv Detail & Related papers (2022-09-28T21:34:47Z) - A Proper Orthogonal Decomposition approach for parameters reduction of
Single Shot Detector networks [0.0]
We propose a dimensionality reduction framework based on Proper Orthogonal Decomposition, a classical model order reduction technique.
We have applied such framework to SSD300 architecture using PASCAL VOC dataset, demonstrating a reduction of the network dimension and a remarkable speedup in the fine-tuning of the network in a transfer learning context.
arXiv Detail & Related papers (2022-07-27T14:43:14Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
We present a new training scheme that adds noise at multiple stages of an existing neural architecture while simultaneously learning to be robust to this added noise.
This architecture, which we call a Self-Denoising Neural Network (SDNN), can be applied easily to most modern convolutional neural architectures.
arXiv Detail & Related papers (2021-10-26T03:28:36Z) - Multirate Training of Neural Networks [0.0]
We show that for various transfer learning applications in vision and NLP we can fine-tune deep neural networks in almost half the time.
We propose an additional multirate technique which can learn different features present in the data by training the full network on different time scales simultaneously.
arXiv Detail & Related papers (2021-06-20T22:44:55Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Extracting dispersion curves from ambient noise correlations using deep
learning [1.0237120900821557]
We present a machine-learning approach to classifying the phases of surface wave dispersion curves.
Standard FTAN analysis of surfaces observed on an array of receivers is converted to an image.
We use a convolutional neural network (U-net) architecture with a supervised learning objective and incorporate transfer learning.
arXiv Detail & Related papers (2020-02-05T23:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.