A Proper Orthogonal Decomposition approach for parameters reduction of
Single Shot Detector networks
- URL: http://arxiv.org/abs/2207.13551v1
- Date: Wed, 27 Jul 2022 14:43:14 GMT
- Title: A Proper Orthogonal Decomposition approach for parameters reduction of
Single Shot Detector networks
- Authors: Laura Meneghetti and Nicola Demo and Gianluigi Rozza
- Abstract summary: We propose a dimensionality reduction framework based on Proper Orthogonal Decomposition, a classical model order reduction technique.
We have applied such framework to SSD300 architecture using PASCAL VOC dataset, demonstrating a reduction of the network dimension and a remarkable speedup in the fine-tuning of the network in a transfer learning context.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a major breakthrough in artificial intelligence and deep learning,
Convolutional Neural Networks have achieved an impressive success in solving
many problems in several fields including computer vision and image processing.
Real-time performance, robustness of algorithms and fast training processes
remain open problems in these contexts. In addition object recognition and
detection are challenging tasks for resource-constrained embedded systems,
commonly used in the industrial sector. To overcome these issues, we propose a
dimensionality reduction framework based on Proper Orthogonal Decomposition, a
classical model order reduction technique, in order to gain a reduction in the
number of hyperparameters of the net. We have applied such framework to SSD300
architecture using PASCAL VOC dataset, demonstrating a reduction of the network
dimension and a remarkable speedup in the fine-tuning of the network in a
transfer learning context.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications.
We base our architecture on a novel neural network layer developed in this work, the graph feedforward network.
We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parametrised partial differential equations.
arXiv Detail & Related papers (2024-06-05T18:31:37Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
arXiv Detail & Related papers (2022-11-17T11:06:29Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
Massive access is a critical design challenge of Internet of Things (IoT) networks.
We consider the grant-free uplink transmission of an IoT network with a multiple-antenna base station (BS) and a large number of single-antenna IoT devices.
We propose a novel algorithm unrolling framework based on the deep neural network to simultaneously achieve low computational complexity and high robustness.
arXiv Detail & Related papers (2021-06-19T05:23:05Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
This work presents an unsupervised learning framework that is able to predict at-scale depth maps and egomotion.
Our results demonstrate strong performance when compared to the current state-of-the-art on multiple sequences of the KITTI driving dataset.
arXiv Detail & Related papers (2020-11-02T22:26:58Z) - DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural
Networks [4.358626952482686]
We present a novel non-uniform quantizer that can be seamlessly mapped onto efficient ternary-based dot product engines.
The proposed quantizer (DBQ) successfully tackles the daunting task of aggressively quantizing lightweight networks such as MobileNetV1, MobileNetV2, and ShuffleNetV2.
DBQ achieves state-of-the art results with minimal training overhead and provides the best (pareto-optimal) accuracy-complexity trade-off.
arXiv Detail & Related papers (2020-07-19T23:50:09Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.