論文の概要: AD-VO: Scale-Resilient Visual Odometry Using Attentive Disparity Map
- arxiv url: http://arxiv.org/abs/2001.02090v1
- Date: Tue, 7 Jan 2020 15:01:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 20:53:05.030086
- Title: AD-VO: Scale-Resilient Visual Odometry Using Attentive Disparity Map
- Title(参考訳): AD-VO: Attentive Disparity Map を用いたスケールレジリエント・ビジュアルオドメトリー
- Authors: Joosung Lee, Sangwon Hwang, Kyungjae Lee, Woo Jin Kim, Junhyeop Lee,
Tae-young Chung, Sangyoun Lee
- Abstract要約: フレーム・ツー・フレームの単眼視視力推定のための学習に基づくアプローチを提案する。
提案するネットワークは,環境変化を網羅するだけでなく,スケール問題を解くために,不均一マップによってのみ学習される。
- 参考スコア(独自算出の注目度): 8.215561330478886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual odometry is an essential key for a localization module in SLAM
systems. However, previous methods require tuning the system to adapt
environment changes. In this paper, we propose a learning-based approach for
frame-to-frame monocular visual odometry estimation. The proposed network is
only learned by disparity maps for not only covering the environment changes
but also solving the scale problem. Furthermore, attention block and
skip-ordering scheme are introduced to achieve robust performance in various
driving environment. Our network is compared with the conventional methods
which use common domain such as color or optical flow. Experimental results
confirm that the proposed network shows better performance than other
approaches with higher and more stable results.
- Abstract(参考訳): 視力計測はSLAMシステムのローカライゼーションモジュールにとって重要な鍵である。
しかし、以前の方法は環境変化に対応するためにシステムをチューニングする必要がある。
本稿では,フレーム・ツー・フレームの単眼視力推定のための学習的アプローチを提案する。
提案するネットワークは,環境変化を網羅するだけでなく,スケール問題を解くために,不均一マップによってのみ学習される。
さらに,様々な運転環境においてロバストな性能を実現するため,注意ブロックとスキップ順序付け方式を導入する。
我々のネットワークは、色や光の流れなどの共通領域を使用する従来の手法と比較される。
実験結果から,提案するネットワークは,より高安定な他の手法よりも優れた性能を示すことがわかった。
関連論文リスト
- Self-Supervised Geometry-Guided Initialization for Robust Monocular Visual Odometry [9.79428015716139]
本稿では,屋外ベンチマークにおける主要な障害事例を分析し,学習ベースSLAMモデル(DROID-SLAM)の欠点を明らかにする。
本研究では, 凍結した大規模単分子深度推定を利用して, 密集束調整過程を初期化する自己教師付き事前計算手法を提案する。
その単純さにもかかわらず,提案手法は, DDADベンチマークと同様に, KITTIオドメトリーの大幅な改善を示す。
論文 参考訳(メタデータ) (2024-06-03T01:59:29Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
クラスアクティベーションマッピングに基づくShap-CAMと呼ばれる新しい視覚的説明法を開発した。
我々は,Shap-CAMが意思決定プロセスの解釈において,より良い視覚的性能と公平性を実現することを実証した。
論文 参考訳(メタデータ) (2022-08-07T00:59:23Z) - Efficient Deep Visual and Inertial Odometry with Adaptive Visual
Modality Selection [12.754974372231647]
本稿では,適応型深層学習に基づくVIO手法を提案する。
Gumbel-Softmax のトリックを用いてポリシーネットワークをトレーニングし、エンドツーエンドのシステムトレーニングで決定プロセスを差別化できるようにする。
実験結果から,本手法は全モードベースラインと同じような,あるいはさらに優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-12T16:17:49Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
ニューラルネットワークの高次元景観特性を探索する方法を示す。
我々は、小さなニューラルネットワークの観測結果をより複雑なシステムに一般化する。
インタラクティブダッシュボードは、いくつかのアプリケーションネットワークを開放する。
論文 参考訳(メタデータ) (2022-04-09T16:41:53Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
本稿では,低照度画像強調(LIE)問題に対する新たなディープラーニングフレームワークを提案する。
提案フレームワークは,大域的明るさと局所的明るさ感度の両方を考慮したアルゴリズムアンロールと調整ネットワークに着想を得た分解ネットワークを含む。
一連の典型的なLIEデータセットの実験では,既存の手法と比較して,定量的かつ視覚的に,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-12T03:59:38Z) - Robust Visual Odometry Using Position-Aware Flow and Geometric Bundle
Adjustment [16.04240592057438]
まず,位置認識機構上に構築された新しい光フローネットワーク(PANet)を提案する。
そこで本研究では,エゴモーション学習のための典型的なネットワークを使わずに,深度,光学的流れ,エゴモーションを共同で推定するシステムを提案する。
実験により,提案システムは深度,流れ,VO推定の点で,他の最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-11-22T12:05:27Z) - Keep the Gradients Flowing: Using Gradient Flow to Study Sparse Network
Optimization [16.85167651136133]
スパースネットワークのトレーニングについて、より広い視点で考察し、スパースモデルにおける正規化、最適化、アーキテクチャ選択の役割について考察する。
アーキテクチャ設計とトレーニング体制の側面を再考することにより,スパースネットワーク内の勾配流を改善することができることを示す。
論文 参考訳(メタデータ) (2021-02-02T18:40:26Z) - Urban Change Detection by Fully Convolutional Siamese Concatenate
Network with Attention [0.6999740786886537]
変更検出(CD)はリモートセンシング、特に都市管理における災害時において重要な問題である。
オブジェクトベースのモデルは、非常に高解像度のリモートセンシング(VHR RS)画像を扱うピクセルベースの手法に好まれる。
本稿では,VHR RS画像の完全自動変化検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-31T17:47:16Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。