Testing the Structure of Multipartite Entanglement with Hardy's
Nonlocality
- URL: http://arxiv.org/abs/2001.02143v1
- Date: Tue, 7 Jan 2020 16:05:34 GMT
- Title: Testing the Structure of Multipartite Entanglement with Hardy's
Nonlocality
- Authors: Lijinzhi Lin, Zhaohui Wei
- Abstract summary: We show a couple of crucial different behaviors between general $N$-qubit GHZ states and general $N$-qubit W states.
We generalize our approach to obtain an intuition for general $N$-qubit W states, revealing that when $N$ the maximum violation probabilities decay is exponentially slower than that of general $N$-qubit GHZ states.
- Score: 0.6091702876917279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multipartite quantum states may exhibit different types of quantum
entanglement in that they cannot be converted into each other by local quantum
operations only, and fully understanding mathematical structures of different
types of multipartite entanglement is a very challenging task. In this paper,
from the viewpoint of Hardy's nonlocality, we compare W and GHZ states and show
a couple of crucial different behaviors between them. Particularly, by
developing a geometric model for the Hardy's nonlocality problem of W states,
we derive an upper bound for its maximal violation probability, which turns out
to be strictly smaller than the corresponding probability of GHZ state. This
gives us a new comparison between these two quantum states, and the result is
also consistent with our intuition that GHZ states is more entangled.
Furthermore, we generalize our approach to obtain an asymptotic
characterization for general $N$-qubit W states, revealing that when $N$ goes
up, the speed that the maximum violation probabilities decay is exponentially
slower than that of general $N$-qubit GHZ states. We provide some numerical
simulations to verify our theoretical results.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Quasi-quantum states and the quasi-quantum PCP theorem [0.21485350418225244]
We show that solving the $k$-local Hamiltonian over the quasi-quantum states is equivalent to optimizing a distribution of assignment over a classical $k$-local CSP.
Our main result is a PCP theorem for the $k$-local Hamiltonian over the quasi-quantum states in the form of a hardness-of-approximation result.
arXiv Detail & Related papers (2024-10-17T13:43:18Z) - Multipartite Embezzlement of Entanglement [44.99833362998488]
Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication.
We show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families.
We discuss our results in the context of quantum field theory and quantum many-body physics.
arXiv Detail & Related papers (2024-09-11T22:14:22Z) - Mixed-state quantum anomaly and multipartite entanglement [8.070164241593814]
We show a surprising connection between mixed state entanglement and 't Hooft anomaly.
We generate examples of mixed states with nontrivial long-ranged multipartite entanglement.
We also briefly discuss mixed anomaly involving both strong and weak symmetries.
arXiv Detail & Related papers (2024-01-30T19:00:02Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Nonlocality under Computational Assumptions [51.020610614131186]
A set of correlations is said to be nonlocal if it cannot be reproduced by spacelike-separated parties sharing randomness and performing local operations.
We show that there exist (efficient) local producing measurements that cannot be reproduced through randomness and quantum-time computation.
arXiv Detail & Related papers (2023-03-03T16:53:30Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Super-exponential distinguishability of correlated quantum states [0.0]
A super-exponential decrease for both types of error probabilities is only possible in the trivial case.
We show that a qualitatively different behaviour can occur when there is correlation between the samples.
arXiv Detail & Related papers (2022-03-30T17:49:19Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode
states [0.0]
Correlations of two-party $(N, textvs,1)$-mode states are examined by using the variances of a pair of suitable EPR-like observables.
The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability.
arXiv Detail & Related papers (2021-07-02T13:11:00Z) - Attainability and lower semi-continuity of the relative entropy of
entanglement, and variations on the theme [8.37609145576126]
The relative entropy of entanglement $E_Rite is defined as the distance of a multi-part quantum entanglement from the set of separable states as measured by the quantum relative entropy.
We show that this state is always achieved, i.e. any state admits a closest separable state, even in dimensions; also, $E_Rite is everywhere lower semi-negative $lambda_$quasi-probability distribution.
arXiv Detail & Related papers (2021-05-17T18:03:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.