Multipartite Embezzlement of Entanglement
- URL: http://arxiv.org/abs/2409.07646v1
- Date: Wed, 11 Sep 2024 22:14:22 GMT
- Title: Multipartite Embezzlement of Entanglement
- Authors: Lauritz van Luijk, Alexander Stottmeister, Henrik Wilming,
- Abstract summary: Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication.
We show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families.
We discuss our results in the context of quantum field theory and quantum many-body physics.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication while perturbing the resource arbitrarily little. Recently, the existence of embezzling states of bipartite systems of type III von Neumann algebras was shown. However, both the multipartite case and the precise relation between embezzling states and the notion of embezzling families, as originally defined by van Dam and Hayden, was left open. Here, we show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families. In contrast, not every embezzling family converges to an embezzling state. We identify an additional consistency condition that ensures that an embezzling family converges to an embezzling state. This criterion distinguishes the embezzling family of van Dam and Hayden from the one by Leung, Toner, and Watrous. The latter generalizes to the multipartite setting. By taking a limit, we obtain a multipartite system of commuting type III$_1$ factors on which every state is an embezzling state. We discuss our results in the context of quantum field theory and quantum many-body physics. As open problems, we ask whether vacua of relativistic quantum fields in more than two spacetime dimensions are multipartite embezzling states and whether multipartite embezzlement allows for an operator-algebraic characterization.
Related papers
- Critical Fermions are Universal Embezzlers [44.99833362998488]
We show that universal embezzlers are ubiquitous in many-body physics.
The same property holds in locally-interacting, dual spin chains via the Jordan-Wigner transformation.
arXiv Detail & Related papers (2024-06-17T17:03:41Z) - Teleportation of a qubit using exotic entangled coherent states [0.0]
We study the exotic Landau problem at the classical level where two conserved quantities are derived.
We form entangled coherent states which are Bell-like states labeled quasi-Bell states.
The effect of non-maximality of a quasi-Bell state based quantum channel is investigated in the context of a teleportation of a qubit.
arXiv Detail & Related papers (2024-04-03T12:03:38Z) - Embezzlement of entanglement, quantum fields, and the classification of von Neumann algebras [41.94295877935867]
We study the quantum information theoretic task of embezzlement of entanglement in the setting of von Neumann algebras.
We quantify the performance of a given resource state by the worst-case error.
Our findings have implications for relativistic quantum field theory, where type III algebras naturally appear.
arXiv Detail & Related papers (2024-01-14T14:22:54Z) - Unveiling the geometric meaning of quantum entanglement: discrete and
continuous variable systems [0.0]
We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure.
We derive the Fubini-Study metric of the projective Hilbert space of a multi-qubit quantum system.
We investigate its deep link with the entanglement of the states of this space.
arXiv Detail & Related papers (2023-07-31T16:58:43Z) - Multipartite entanglement theory with entanglement-nonincreasing
operations [91.3755431537592]
We extend the resource theory of entanglement for multipartite systems beyond the standard framework of local operations and classical communication.
We demonstrate that in this adjusted framework, the transformation rates between multipartite states are fundamentally dictated by the bipartite entanglement entropies of the respective quantum states.
arXiv Detail & Related papers (2023-05-30T12:53:56Z) - Genuine multipartite entanglement in a one-dimensional Bose-Hubbard
model with frustrated hopping [0.0]
Frustration and quantum entanglement are exotic quantum properties in quantum many-body systems.
We explore the relationship between frustration and quantum entanglement in a physical model describing strongly correlated atoms in optical lattices.
arXiv Detail & Related papers (2022-09-19T08:01:21Z) - Measurement-based Multipartite Entanglement Inflation [0.0]
We consider weak entangling measurement on two parties as the basic unit of operation to create entanglement between more parties.
In the context of inflating bipartite entanglement to more number of parties, surprisingly, maximally entangled states as inputs turn out to be worse than that of the non-maximally entangled states.
arXiv Detail & Related papers (2021-08-13T11:32:46Z) - Asymptotic survival of genuine multipartite entanglement in noisy
quantum networks depends on the topology [0.5156484100374058]
We show that genuine multipartite entanglement in a PEN state depends on both the level of noise and the network topology.
Our main result is a markedly drastic feature of this phenomenon.
To illustrate the applicability of PEN states to study the complex phenomenology behind multipartite entanglement, we also use them to prove superactivation of genuine multipartite nonlocality for any number of parties.
arXiv Detail & Related papers (2021-06-08T18:41:28Z) - Heterogeneous Multipartite Entanglement Purification for
Size-Constrained Quantum Devices [68.8204255655161]
Purifying entanglement resources after their imperfect generation is an indispensable step towards using them in quantum architectures.
Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years.
We find that smaller sacrificial' states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states.
arXiv Detail & Related papers (2020-11-23T19:00:00Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.