論文の概要: Revealing Neural Network Bias to Non-Experts Through Interactive
Counterfactual Examples
- arxiv url: http://arxiv.org/abs/2001.02271v2
- Date: Thu, 9 Jan 2020 19:09:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 21:12:36.503047
- Title: Revealing Neural Network Bias to Non-Experts Through Interactive
Counterfactual Examples
- Title(参考訳): 対話型対実例による非専門家へのニューラルネットワークバイアスの探索
- Authors: Chelsea M. Myers, Evan Freed, Luis Fernando Laris Pardo, Anushay
Furqan, Sebastian Risi, Jichen Zhu
- Abstract要約: 一般的なAI手法であるニューラルネットワーク(NN)におけるバイアスを明らかにするための対話型可視化ツールCEBの予備設計を提案する。
CEBは、NN決定プロセスの反実例と抽象化を組み合わせて、非専門家にバイアスを検出する権限を与える。
- 参考スコア(独自算出の注目度): 16.22414499524756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI algorithms are not immune to biases. Traditionally, non-experts have
little control in uncovering potential social bias (e.g., gender bias) in the
algorithms that may impact their lives. We present a preliminary design for an
interactive visualization tool CEB to reveal biases in a commonly used AI
method, Neural Networks (NN). CEB combines counterfactual examples and
abstraction of an NN decision process to empower non-experts to detect bias.
This paper presents the design of CEB and initial findings of an expert panel
(n=6) with AI, HCI, and Social science experts.
- Abstract(参考訳): AIアルゴリズムはバイアスに免疫がない。
伝統的に、非専門家は、人生に影響を及ぼす可能性のあるアルゴリズムの潜在的な社会的バイアス(例えば、性別バイアス)を明らかにする制御をほとんど持っていない。
本稿では,対話型可視化ツールCEBの予備設計を行い,一般的なAI手法であるニューラルネットワーク(NN)のバイアスを明らかにする。
CEBは、NN決定プロセスの反実例と抽象化を組み合わせて、非専門家にバイアスを検出する権限を与える。
本稿では,cebの設計と,ai,hci,社会科学の専門家による専門家パネル(n=6)の初期知見について述べる。
関連論文リスト
- Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Debiasing Methods for Fairer Neural Models in Vision and Language
Research: A Survey [3.4767443062432326]
フェアネスを意識したニューラルネットワークの主なデバイアス法について,詳細な概要を述べる。
本研究では,公平性に関する嫌悪法に関する文献を整理する新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-11-10T14:42:46Z) - Whole Page Unbiased Learning to Rank [59.52040055543542]
アンバイアスド・ラーニング・トゥ・ランク(ULTR)アルゴリズムは、バイアスド・クリックデータを用いたアンバイアスド・ランキングモデルを学ぶために提案される。
本稿では,BALというアルゴリズムをランク付けするバイアス非依存学習を提案する。
実世界のデータセットによる実験結果から,BALの有効性が検証された。
論文 参考訳(メタデータ) (2022-10-19T16:53:08Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Explainable Artificial Intelligence for Bayesian Neural Networks:
Towards trustworthy predictions of ocean dynamics [0.0]
ニューラルネットワークの信頼性は、不確実性を表現したり、スキルを説明する能力が欠けているため、しばしば疑問視される。
気候変動の応用など、高い利害関係の意思決定においてニューラルネットワークの利用が増加していることを考えると、これは問題となる可能性がある。
我々は、パラメータが決定論的ではなく分布であるベイズニューラルネットワーク(BNN)の実装に成功し、説明可能なAI(XAI)技術の新しい実装を適用することにより、両方の問題に対処する。
論文 参考訳(メタデータ) (2022-04-30T08:35:57Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - Simon Says: Evaluating and Mitigating Bias in Pruned Neural Networks
with Knowledge Distillation [8.238238958749134]
プルーニングニューラルネットワークの評価と緩和に関する現在の文献には明確なギャップがある。
本稿では,CEV(Combined Error Variance)とSDE(Symmetric Distance Error)の2つの簡易かつ効果的な指標を提案する。
第二に、知識蒸留は、不均衡なデータセットであっても、刈り取られたニューラルネットワークにおける誘導バイアスを軽減することができることを実証する。
第3に、モデル類似性はプルーニング誘起バイアスと強い相関関係があることを明らかにし、なぜプルーニングニューラルネットワークでバイアスが発生するのかを説明する強力な方法を提供する。
論文 参考訳(メタデータ) (2021-06-15T02:59:32Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z) - Fairness Through Robustness: Investigating Robustness Disparity in Deep
Learning [61.93730166203915]
我々は、モデルが敵の攻撃に弱い場合、従来の公平性の概念では不十分であると主張する。
頑健性バイアスを測定することはDNNにとって難しい課題であり,この2つの方法を提案する。
論文 参考訳(メタデータ) (2020-06-17T22:22:24Z) - An Adversarial Approach for Explaining the Predictions of Deep Neural
Networks [9.645196221785694]
本稿では,敵対的機械学習を用いて,ディープニューラルネットワーク(DNN)の予測を説明する新しいアルゴリズムを提案する。
提案手法は,DNNに対する敵攻撃の挙動に基づいて,入力特徴の相対的重要性を推定する。
分析により、一貫性のある効率的な説明が得られます。
論文 参考訳(メタデータ) (2020-05-20T18:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。