論文の概要: Training Progressively Binarizing Deep Networks Using FPGAs
- arxiv url: http://arxiv.org/abs/2001.02390v1
- Date: Wed, 8 Jan 2020 06:01:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 10:10:57.150955
- Title: Training Progressively Binarizing Deep Networks Using FPGAs
- Title(参考訳): FPGAを用いた深層ネットワークの学習
- Authors: Corey Lammie, Wei Xiang, Mostafa Rahimi Azghadi
- Abstract要約: 固定点ネットワークパラメータの特異集合を段階的に二項化するハードウェアフレンドリーなトレーニング手法を提案する。
我々は、CIFAR-10を用いたGPUとFPGAのトレーニング手法をベンチマークし、従来のBNNと比較した。
- 参考スコア(独自算出の注目度): 8.220397381205446
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While hardware implementations of inference routines for Binarized Neural
Networks (BNNs) are plentiful, current realizations of efficient BNN hardware
training accelerators, suitable for Internet of Things (IoT) edge devices,
leave much to be desired. Conventional BNN hardware training accelerators
perform forward and backward propagations with parameters adopting binary
representations, and optimization using parameters adopting floating or
fixed-point real-valued representations--requiring two distinct sets of network
parameters. In this paper, we propose a hardware-friendly training method that,
contrary to conventional methods, progressively binarizes a singular set of
fixed-point network parameters, yielding notable reductions in power and
resource utilizations. We use the Intel FPGA SDK for OpenCL development
environment to train our progressively binarizing DNNs on an OpenVINO FPGA. We
benchmark our training approach on both GPUs and FPGAs using CIFAR-10 and
compare it to conventional BNNs.
- Abstract(参考訳): バイナリニューラルネットワーク(BNN)の推論ルーチンのハードウェア実装は豊富だが、IoT(Internet of Things)エッジデバイスに適した効率的なBNNハードウェアトレーニングアクセラレータの現在の実現は、多くを望んでいない。
従来のBNNハードウェアトレーニングアクセラレータは、バイナリ表現を採用するパラメータと、浮動小数点実数値表現を採用するパラメータを用いた最適化により、前方と後方の伝搬を行う。
本稿では,従来手法とは対照的に,固定点ネットワークパラメータの特異集合を段階的に二元化することにより,電力と資源利用の大幅な削減を実現するハードウェアフレンドリなトレーニング手法を提案する。
我々は、Intel FPGA SDK for OpenCL開発環境を使用して、OpenVINO FPGA上で段階的に二項化DNNをトレーニングする。
我々は、CIFAR-10を用いたGPUとFPGAのトレーニングアプローチをベンチマークし、従来のBNNと比較した。
関連論文リスト
- Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
本研究では、フィールドプログラマブルゲートアレイ(FPGA)を用いたECG信号解析のための高度なニューラルネットワークアーキテクチャを提案する。
我々は、トレーニングと検証にMIT-BIH Arrhythmia Databaseを使用し、堅牢性を改善するためにガウスノイズを導入した。
この研究は最終的に、様々なアプリケーションのためのFPGA上でのニューラルネットワーク性能を最適化するためのガイドを提供する。
論文 参考訳(メタデータ) (2023-07-16T01:20:17Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - FFCNN: Fast FPGA based Acceleration for Convolution neural network
inference [0.0]
畳み込みニューラルネットワーク(FFCNN)のためのFPGAの高速推論について述べる。
FFCNNは、深くパイプライン化されたOpenCLカーネルアーキテクチャに基づいている。
データ再利用とタスクマッピング技術も設計効率を向上させるために提案されている。
論文 参考訳(メタデータ) (2022-08-28T16:55:25Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
我々は、フィールドプログラマブルゲートアレイ(FPGA)を用いた分散AI訓練システムのための新しいスマートネットワークインタフェースカード(NIC)を提案する。
提案するFPGAベースのAIスマートNICは,従来のNICを用いたベースラインシステムと比較して,6ノードで1.6倍,32ノードで2.5倍の性能向上が期待できる。
論文 参考訳(メタデータ) (2022-04-22T21:57:00Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - Learning on Hardware: A Tutorial on Neural Network Accelerators and
Co-Processors [0.0]
ディープニューラルネットワーク(dnn)は、複雑なタスクを解決可能にするために、多くのパラメータを考慮に入れることができるという利点がある。
コンピュータビジョンや音声認識では、一般的なアルゴリズムよりも精度が高く、タスクによっては人間の専門家よりも精度が高いものもあります。
近年のDNNの進展に伴い、疾患の診断や自動運転など、多くの応用分野が活用されています。
論文 参考訳(メタデータ) (2021-04-19T12:50:27Z) - FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with
Fractional Activations [20.218382369944152]
binary neural network (bnns) は1ビットの重みとアクティベーションを持つ。
BNNはImageNetのような現実的なデータセットの精度がはるかに低い傾向にある。
本研究では、BNNの精度を大幅に向上させるために分数活性化を利用するFracBNNを提案する。
論文 参考訳(メタデータ) (2020-12-22T17:49:30Z) - Compressing deep neural networks on FPGAs to binary and ternary
precision with HLS4ML [13.325670094073383]
本稿では, hls4mlライブラリにおける2次ニューラルネットワークと3次ニューラルネットワークの実装について述べる。
モデル精度と資源消費のトレードオフについて論じる。
二分法と三分法の実装は、FPGAリソースを劇的に減らしながら高い精度の実装と類似した性能を持つ。
論文 参考訳(メタデータ) (2020-03-11T10:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。