論文の概要: Generating Object Stamps
- arxiv url: http://arxiv.org/abs/2001.02595v2
- Date: Fri, 10 Jan 2020 12:09:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 09:37:12.788485
- Title: Generating Object Stamps
- Title(参考訳): オブジェクトスタンプの生成
- Authors: Youssef Alami Mejjati and Zejiang Shen and Michael Snower and Aaron
Gokaslan and Oliver Wang and James Tompkin and Kwang In Kim
- Abstract要約: GANアーキテクチャを用いて,様々な前景オブジェクトを生成し,背景画像に合成するアルゴリズムを提案する。
挑戦的なCOCOデータセットの結果,最先端のオブジェクト挿入手法と比較して,全体的な品質と多様性が向上した。
- 参考スコア(独自算出の注目度): 47.20601520671103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithm to generate diverse foreground objects and composite
them into background images using a GAN architecture. Given an object class, a
user-provided bounding box, and a background image, we first use a mask
generator to create an object shape, and then use a texture generator to fill
the mask such that the texture integrates with the background. By separating
the problem of object insertion into these two stages, we show that our model
allows us to improve the realism of diverse object generation that also agrees
with the provided background image. Our results on the challenging COCO dataset
show improved overall quality and diversity compared to state-of-the-art object
insertion approaches.
- Abstract(参考訳): GANアーキテクチャを用いて,様々な前景オブジェクトを生成し,背景画像に合成するアルゴリズムを提案する。
オブジェクトクラス、ユーザが提供する境界ボックス、背景イメージが与えられた後、まずマスクジェネレータを使用してオブジェクト形状を作成し、次にテクスチャジェネレータを使用して、テクスチャが背景と統合するようにマスクを埋めます。
これら2つの段階にオブジェクトを挿入する問題を分離することにより、提案した背景画像と一致する多様なオブジェクト生成の現実性を改善することができることを示す。
挑戦的なCOCOデータセットの結果,最先端のオブジェクト挿入手法と比較して,全体的な品質と多様性が向上した。
関連論文リスト
- Completing Visual Objects via Bridging Generation and Segmentation [84.4552458720467]
MaskCompは、生成とセグメンテーションの反復的な段階を通して完了プロセスを記述する。
各イテレーションにおいて、オブジェクトマスクは、画像生成を促進する追加条件として提供される。
我々は,1世代と1つのセグメンテーション段階の組み合わせがマスマスデノイザーとして効果的に機能することを実証した。
論文 参考訳(メタデータ) (2023-10-01T22:25:40Z) - SIEDOB: Semantic Image Editing by Disentangling Object and Background [5.149242555705579]
本稿では,セマンティック画像編集のための新しいパラダイムを提案する。
textbfSIEDOB(サイト・英語)は、オブジェクトと背景に対していくつかの異種ワークを明示的に活用する。
我々はCityscapesとADE20K-Roomデータセットに関する広範な実験を行い、本手法がベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2023-03-23T06:17:23Z) - Localizing Object-level Shape Variations with Text-to-Image Diffusion
Models [60.422435066544814]
本稿では,特定の物体の形状の変化を表現した画像の集合を生成する手法を提案する。
オブジェクトのバリエーションを生成する際の特に課題は、オブジェクトの形状に適用される操作を正確にローカライズすることである。
画像空間の操作をローカライズするために,自己注意層と交差注意層を併用する2つの手法を提案する。
論文 参考訳(メタデータ) (2023-03-20T17:45:08Z) - ObjectStitch: Generative Object Compositing [43.206123360578665]
本研究では,条件付き拡散モデルを用いたオブジェクト合成のための自己教師型フレームワークを提案する。
我々のフレームワークは、手動ラベリングを必要とせず、生成したオブジェクトの視点、幾何学、色、影を変換することができる。
本手法は, 実世界の様々な画像に対するユーザ研究において, 合成結果画像の写実性と忠実性の両方において, 関連ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-12-02T02:15:13Z) - LayoutBERT: Masked Language Layout Model for Object Insertion [3.4806267677524896]
本稿では,オブジェクト挿入タスクのためのレイアウトBERTを提案する。
これは、新しい自己監督型マスク付き言語モデルと双方向多頭部自己注意を用いている。
各種ドメインからのデータセットの質的および定量的評価を行う。
論文 参考訳(メタデータ) (2022-04-30T21:35:38Z) - Context-Aware Layout to Image Generation with Enhanced Object Appearance [123.62597976732948]
レイアウト・トゥ・イメージ(l2i)生成モデルの目的は、自然背景(スタフ)に対して複数のオブジェクト(もの)を含む複雑な画像を生成することである。
既存のL2Iモデルは大きな進歩を遂げているが、オブジェクト間とオブジェクト間の関係はしばしば壊れている。
これらの原因は、ジェネレータにコンテキスト認識オブジェクトや機能エンコーディングがないことと、識別装置に位置依存の外観表現がないことにあります。
論文 参考訳(メタデータ) (2021-03-22T14:43:25Z) - BachGAN: High-Resolution Image Synthesis from Salient Object Layout [78.51640906030244]
本稿では、より実用的な画像生成のための新しい課題である、有能なオブジェクトレイアウトからの高品質な画像合成を提案する。
i) セグメンテーションマップ入力なしできめ細かい詳細と現実的なテクスチャを生成する方法、(ii) バックグラウンドを作成してスタンドアロンのオブジェクトにシームレスに織り込む方法である。
幻影背景表現を動的に生成することにより,高解像度画像をフォトリアリスティック・フォアグラウンドと積分背景の両方で合成することができる。
論文 参考訳(メタデータ) (2020-03-26T00:54:44Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
複数のオブジェクトを持つ複雑なシーンを生成するレイアウト・ツー・イメージ生成法を開発した。
本手法は,シーン内のオブジェクト間の空間的関係の表現を学習し,レイアウトの忠実度の向上につながる。
本稿では,Fr'echet Inception Distanceのオブジェクト中心適応であるSceneFIDを紹介する。
論文 参考訳(メタデータ) (2020-03-16T21:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。