A Unified Framework for Coupled Tensor Completion
- URL: http://arxiv.org/abs/2001.02810v4
- Date: Sun, 8 Nov 2020 12:36:34 GMT
- Title: A Unified Framework for Coupled Tensor Completion
- Authors: Huyan Huang, Yipeng Liu, Ce Zhu
- Abstract summary: Coupled tensor decomposition reveals the joint data structure by incorporating priori knowledge that come from the latent coupled factors.
The TR has powerful expression ability and achieves success in some multi-dimensional data processing applications.
The proposed method is validated on numerical experiments on synthetic data, and experimental results on real-world data demonstrate its superiority over the state-of-the-art methods in terms of recovery accuracy.
- Score: 42.19293115131073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coupled tensor decomposition reveals the joint data structure by
incorporating priori knowledge that come from the latent coupled factors. The
tensor ring (TR) decomposition is invariant under the permutation of tensors
with different mode properties, which ensures the uniformity of decomposed
factors and mode attributes. The TR has powerful expression ability and
achieves success in some multi-dimensional data processing applications. To let
coupled tensors help each other for missing component estimation, in this paper
we utilize TR for coupled completion by sharing parts of the latent factors.
The optimization model for coupled TR completion is developed with a novel
Frobenius norm. It is solved by the block coordinate descent algorithm which
efficiently solves a series of quadratic problems resulted from sampling
pattern. The excess risk bound for this optimization model shows the
theoretical performance enhancement in comparison with other coupled nuclear
norm based methods. The proposed method is validated on numerical experiments
on synthetic data, and experimental results on real-world data demonstrate its
superiority over the state-of-the-art methods in terms of recovery accuracy.
Related papers
- Sparse Tensor PCA via Tensor Decomposition for Unsupervised Feature Selection [8.391109286933856]
We develop two Sparse Principal Component Analysis (STPCA) models that utilize the projection directions in the factor matrices to perform unsupervised feature selection.
For both models, we prove the optimal solution of each subproblem falls onto the Hermitian Positive Semidefinite Cone (HPSD)
According to the experimental results, the two proposed methods are suitable for handling different data tensor scenarios and outperform the state-of-the-art UFS methods.
arXiv Detail & Related papers (2024-07-24T04:04:56Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation [7.265645216663691]
We introduce a novel coupled nonnegative CANDECOMP/PARAFAC decomposition algorithm optimized by the alternating gradient method (CoNCPD-APG)
By integrating low-rank approximation with the proposed CoNCPD-APG method, the proposed algorithm can significantly decrease the computational burden without compromising decomposition quality.
arXiv Detail & Related papers (2023-02-10T08:49:36Z) - Estimating Higher-Order Mixed Memberships via the $\ell_{2,\infty}$
Tensor Perturbation Bound [8.521132000449766]
We propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel.
We establish the identifiability of our model and propose a computationally efficient estimation procedure.
We apply our methodology to real and simulated data, demonstrating some effects not identifiable from the model with discrete community memberships.
arXiv Detail & Related papers (2022-12-16T18:32:20Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Tensor Full Feature Measure and Its Nonconvex Relaxation Applications to
Tensor Recovery [1.8899300124593645]
We propose a new tensor sparsity measure called Full Feature Measure (FFM)
It can simultaneously describe the feature dimension each dimension, and connect the Tucker rank with the tensor tube rank.
Two efficient models based on FFM are proposed, and two Alternating Multiplier Method (ADMM) algorithms are developed to solve the proposed model.
arXiv Detail & Related papers (2021-09-25T01:44:34Z) - Tensor completion via nonconvex tensor ring rank minimization with
guaranteed convergence [16.11872681638052]
In recent studies, the tensor ring (TR) rank has shown high effectiveness in tensor completion.
A recently proposed TR rank is based on capturing the structure within the weighted sum penalizing the singular value equally.
In this paper, we propose to use the logdet-based function as a non smooth relaxation for solutions practice.
arXiv Detail & Related papers (2020-05-14T03:13:17Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.