Tensor completion via nonconvex tensor ring rank minimization with
guaranteed convergence
- URL: http://arxiv.org/abs/2005.09674v1
- Date: Thu, 14 May 2020 03:13:17 GMT
- Title: Tensor completion via nonconvex tensor ring rank minimization with
guaranteed convergence
- Authors: Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Tian-Hui Ma
- Abstract summary: In recent studies, the tensor ring (TR) rank has shown high effectiveness in tensor completion.
A recently proposed TR rank is based on capturing the structure within the weighted sum penalizing the singular value equally.
In this paper, we propose to use the logdet-based function as a non smooth relaxation for solutions practice.
- Score: 16.11872681638052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent studies, the tensor ring (TR) rank has shown high effectiveness in
tensor completion due to its ability of capturing the intrinsic structure
within high-order tensors. A recently proposed TR rank minimization method is
based on the convex relaxation by penalizing the weighted sum of nuclear norm
of TR unfolding matrices. However, this method treats each singular value
equally and neglects their physical meanings, which usually leads to suboptimal
solutions in practice. In this paper, we propose to use the logdet-based
function as a nonconvex smooth relaxation of the TR rank for tensor completion,
which can more accurately approximate the TR rank and better promote the
low-rankness of the solution. To solve the proposed nonconvex model
efficiently, we develop an alternating direction method of multipliers
algorithm and theoretically prove that, under some mild assumptions, our
algorithm converges to a stationary point. Extensive experiments on color
images, multispectral images, and color videos demonstrate that the proposed
method outperforms several state-of-the-art competitors in both visual and
quantitative comparison. Key words: nonconvex optimization, tensor ring rank,
logdet function, tensor completion, alternating direction method of
multipliers.
Related papers
- Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - A Novel Tensor Factorization-Based Method with Robustness to Inaccurate
Rank Estimation [9.058215418134209]
We propose a new tensor norm with a dual low-rank constraint, which utilizes the low-rank prior and rank information at the same time.
It is proven theoretically that the resulting tensor completion model can effectively avoid performance degradation caused by inaccurate rank estimation.
Based on this, the total cost at each iteration of the optimization algorithm is reduced to $mathcalO(n3log n +kn3)$ from $mathcalO(n4)$ achieved with standard methods.
arXiv Detail & Related papers (2023-05-19T06:26:18Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
Low-rank tensor function representation (LRTFR) can continuously represent data beyond meshgrid with infinite resolution.
We develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization.
Our method substantiates the superiority and versatility of our method as compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-12-01T04:00:38Z) - Error Analysis of Tensor-Train Cross Approximation [88.83467216606778]
We provide accuracy guarantees in terms of the entire tensor for both exact and noisy measurements.
Results are verified by numerical experiments, and may have important implications for the usefulness of cross approximations for high-order tensors.
arXiv Detail & Related papers (2022-07-09T19:33:59Z) - Robust M-estimation-based Tensor Ring Completion: a Half-quadratic
Minimization Approach [14.048989759890475]
We develop a robust approach to tensor ring completion that uses an M-estimator as its error statistic.
We present two HQ-based algorithms based on truncated singular value decomposition and matrix factorization.
arXiv Detail & Related papers (2021-06-19T04:37:50Z) - MTC: Multiresolution Tensor Completion from Partial and Coarse
Observations [49.931849672492305]
Existing completion formulation mostly relies on partial observations from a single tensor.
We propose an efficient Multi-resolution Completion model (MTC) to solve the problem.
arXiv Detail & Related papers (2021-06-14T02:20:03Z) - Enhanced nonconvex low-rank approximation of tensor multi-modes for
tensor completion [1.3406858660972554]
We propose a novel low-rank approximation tensor multi-modes (LRATM)
A block-bound method-based algorithm is designed to efficiently solve the proposed model.
Numerical results on three types of public multi-dimensional datasets have tested and shown that our algorithm can recover a variety of low-rank tensors.
arXiv Detail & Related papers (2020-05-28T08:53:54Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z) - TRP: Trained Rank Pruning for Efficient Deep Neural Networks [69.06699632822514]
We propose Trained Rank Pruning (TRP), which alternates between low rank approximation and training.
A nuclear regularization optimized by sub-gradient descent is utilized to further promote low rank in TRP.
The TRP trained network inherently has a low-rank structure, and is approximated with negligible performance loss.
arXiv Detail & Related papers (2020-04-30T03:37:36Z) - Tensor denoising and completion based on ordinal observations [11.193504036335503]
We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations.
We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees.
We show that the proposed estimator is minimax optimal under the class of low-rank models.
arXiv Detail & Related papers (2020-02-16T07:09:56Z) - A Unified Framework for Coupled Tensor Completion [42.19293115131073]
Coupled tensor decomposition reveals the joint data structure by incorporating priori knowledge that come from the latent coupled factors.
The TR has powerful expression ability and achieves success in some multi-dimensional data processing applications.
The proposed method is validated on numerical experiments on synthetic data, and experimental results on real-world data demonstrate its superiority over the state-of-the-art methods in terms of recovery accuracy.
arXiv Detail & Related papers (2020-01-09T02:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.