Robust Facial Landmark Detection via Aggregation on Geometrically
Manipulated Faces
- URL: http://arxiv.org/abs/2001.03113v1
- Date: Tue, 7 Jan 2020 16:43:09 GMT
- Title: Robust Facial Landmark Detection via Aggregation on Geometrically
Manipulated Faces
- Authors: Seyed Mehdi Iranmanesh, Ali Dabouei, Sobhan Soleymani, Hadi Kazemi,
Nasser M. Nasrabadi
- Abstract summary: We equip our method with the aggregation of manipulated face images.
Small but carefully crafted geometric manipulation in the input domain can fool deep face recognition models.
Our approach is demonstrated its superiority compared to the state-of-the-art method on benchmark datasets AFLW, 300-W, and COFW.
- Score: 32.391300491317445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a practical approach to the problem of facial
landmark detection. The proposed method can deal with large shape and
appearance variations under the rich shape deformation. To handle the shape
variations we equip our method with the aggregation of manipulated face images.
The proposed framework generates different manipulated faces using only one
given face image. The approach utilizes the fact that small but carefully
crafted geometric manipulation in the input domain can fool deep face
recognition models. We propose three different approaches to generate
manipulated faces in which two of them perform the manipulations via
adversarial attacks and the other one uses known transformations. Aggregating
the manipulated faces provides a more robust landmark detection approach which
is able to capture more important deformations and variations of the face
shapes. Our approach is demonstrated its superiority compared to the
state-of-the-art method on benchmark datasets AFLW, 300-W, and COFW.
Related papers
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - Optimal-Landmark-Guided Image Blending for Face Morphing Attacks [8.024953195407502]
We propose a novel approach for conducting face morphing attacks, which utilizes optimal-landmark-guided image blending.
Our proposed method overcomes the limitations of previous approaches by optimizing the morphing landmarks and using Graph Convolutional Networks (GCNs) to combine landmark and appearance features.
arXiv Detail & Related papers (2024-01-30T03:45:06Z) - BlendFields: Few-Shot Example-Driven Facial Modeling [35.86727715239676]
We introduce a method that bridges the gap by drawing inspiration from traditional computer graphics techniques.
Unseen expressions are modeled by blending appearance from a sparse set of extreme poses.
We show that our method generalizes to unseen expressions, adding fine-grained effects on top of smooth volumetric deformations of a face, and demonstrate how it generalizes beyond faces.
arXiv Detail & Related papers (2023-05-12T14:30:07Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
StyleGAN-based approaches to face morphing are among the leading techniques.
We propose a transformer-based alternative to face morphing and demonstrate its superiority to StyleGAN-based methods.
arXiv Detail & Related papers (2023-02-18T19:09:11Z) - Face Forgery Detection Based on Facial Region Displacement Trajectory
Series [10.338298543908339]
We develop a method for detecting manipulated videos based on the trajectory of the facial region displacement.
This information was used to construct a network for exposing multidimensional artifacts in the trajectory sequences of manipulated videos.
arXiv Detail & Related papers (2022-12-07T14:47:54Z) - Restricted Black-box Adversarial Attack Against DeepFake Face Swapping [70.82017781235535]
We introduce a practical adversarial attack that does not require any queries to the facial image forgery model.
Our method is built on a substitute model persuing for face reconstruction and then transfers adversarial examples from the substitute model directly to inaccessible black-box DeepFake models.
arXiv Detail & Related papers (2022-04-26T14:36:06Z) - HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping [116.1022638063613]
We propose HifiFace, which can preserve the face shape of the source face and generate photo-realistic results.
We introduce the Semantic Facial Fusion module to optimize the combination of encoder and decoder features.
arXiv Detail & Related papers (2021-06-18T07:39:09Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
Face-swap images and videos have attracted more and more malicious attackers to discredit some key figures.
Previous pixel-level artifacts based detection techniques always focus on some unclear patterns but ignore some available semantic clues.
We propose a biometric information based method to fully exploit the appearance and shape feature for face-swap detection of key figures.
arXiv Detail & Related papers (2021-04-28T09:35:48Z) - FaceController: Controllable Attribute Editing for Face in the Wild [74.56117807309576]
We propose a simple feed-forward network to generate high-fidelity manipulated faces.
By simply employing some existing and easy-obtainable prior information, our method can control, transfer, and edit diverse attributes of faces in the wild.
In our method, we decouple identity, expression, pose, and illumination using 3D priors; separate texture and colors by using region-wise style codes.
arXiv Detail & Related papers (2021-02-23T02:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.