GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations
- URL: http://arxiv.org/abs/2409.11951v1
- Date: Wed, 18 Sep 2024 13:05:43 GMT
- Title: GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations
- Authors: Kartik Teotia, Hyeongwoo Kim, Pablo Garrido, Marc Habermann, Mohamed Elgharib, Christian Theobalt,
- Abstract summary: We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
- Score: 54.94362657501809
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Real-time rendering of human head avatars is a cornerstone of many computer graphics applications, such as augmented reality, video games, and films, to name a few. Recent approaches address this challenge with computationally efficient geometry primitives in a carefully calibrated multi-view setup. Albeit producing photorealistic head renderings, it often fails to represent complex motion changes such as the mouth interior and strongly varying head poses. We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time. At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements. First, with rich facial features extracted from raw input frames, we learn to deform the coarse facial geometry of the template mesh. We then initialize 3D Gaussians on the deformed surface and refine their positions in a fine step. We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework. This enables not only controllable facial animation via video inputs, but also high-fidelity novel view synthesis of challenging facial expressions, such as tongue deformations and fine-grained teeth structure under large motion changes. Moreover, it encourages the learned head avatar to generalize towards new facial expressions and head poses at inference time. We demonstrate the performance of our method with comparisons against the related methods on different datasets, spanning challenging facial expression sequences across multiple identities. We also show the potential application of our approach by demonstrating a cross-identity facial performance transfer application.
Related papers
- Single Image, Any Face: Generalisable 3D Face Generation [59.9369171926757]
We propose a novel model, Gen3D-Face, which generates 3D human faces with unconstrained single image input.
To the best of our knowledge, this is the first attempt and benchmark for creating photorealistic 3D human face avatars from single images.
arXiv Detail & Related papers (2024-09-25T14:56:37Z) - FreeAvatar: Robust 3D Facial Animation Transfer by Learning an Expression Foundation Model [45.0201701977516]
Video-driven 3D facial animation transfer aims to drive avatars to reproduce the expressions of actors.
We propose FreeAvatar, a robust facial animation transfer method that relies solely on our learned expression representation.
arXiv Detail & Related papers (2024-09-20T03:17:01Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization [91.52882218901627]
We propose a novel method for constructing implicit 3D morphable face models that are both generalizable and intuitive for editing.
Our method improves upon photo-realism, geometry, and expression accuracy compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T17:58:40Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
We propose IMavatar, a novel method for learning implicit head avatars from monocular videos.
Inspired by the fine-grained control mechanisms afforded by conventional 3DMMs, we represent the expression- and pose-related deformations via learned blendshapes and skinning fields.
We show quantitatively and qualitatively that our method improves geometry and covers a more complete expression space compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-14T15:30:32Z) - Image-to-Video Generation via 3D Facial Dynamics [78.01476554323179]
We present a versatile model, FaceAnime, for various video generation tasks from still images.
Our model is versatile for various AR/VR and entertainment applications, such as face video and face video prediction.
arXiv Detail & Related papers (2021-05-31T02:30:11Z) - VariTex: Variational Neural Face Textures [0.0]
VariTex is a method that learns a variational latent feature space of neural face textures.
To generate images of complete human heads, we propose an additive decoder that generates plausible additional details such as hair.
The resulting method can generate geometrically consistent images of novel identities allowing fine-grained control over head pose, face shape, and facial expressions.
arXiv Detail & Related papers (2021-04-13T07:47:53Z) - Head2Head++: Deep Facial Attributes Re-Targeting [6.230979482947681]
We leverage the 3D geometry of faces and Generative Adversarial Networks (GANs) to design a novel deep learning architecture for the task of facial and head reenactment.
We manage to capture the complex non-rigid facial motion from the driving monocular performances and synthesise temporally consistent videos.
Our system performs end-to-end reenactment in nearly real-time speed (18 fps)
arXiv Detail & Related papers (2020-06-17T23:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.