論文の概要: Camera-Based Adaptive Trajectory Guidance via Neural Networks
- arxiv url: http://arxiv.org/abs/2001.03205v1
- Date: Thu, 9 Jan 2020 20:05:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 04:49:55.717930
- Title: Camera-Based Adaptive Trajectory Guidance via Neural Networks
- Title(参考訳): ニューラルネットワークによるカメラベース適応軌道誘導
- Authors: Aditya Rajguru, Christopher Collander, William J. Beksi
- Abstract要約: 本稿では,屋内ロボットを動的に操作する視覚的軌跡を,ストリーミング画像データを用いて捉える手法を提案する。
捕獲された軌跡は、2つのニューラルネットワークアーキテクチャを設計、訓練、比較するために使用され、連続した空間上でロボットに追従するラインの加速と操舵のコマンドを予測する。
- 参考スコア(独自算出の注目度): 6.2843107854856965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a novel method to capture visual trajectories for
navigating an indoor robot in dynamic settings using streaming image data.
First, an image processing pipeline is proposed to accurately segment
trajectories from noisy backgrounds. Next, the captured trajectories are used
to design, train, and compare two neural network architectures for predicting
acceleration and steering commands for a line following robot over a continuous
space in real time. Lastly, experimental results demonstrate the performance of
the neural networks versus human teleoperation of the robot and the viability
of the system in environments with occlusions and/or low-light conditions.
- Abstract(参考訳): 本稿では,ストリーミング画像データを用いて屋内ロボットを動的に操作するための視覚的軌跡を捕捉する新しい手法を提案する。
まず,ノイズの多い背景から軌跡を正確に分割する画像処理パイプラインを提案する。
次に、捕獲された軌道は、2つのニューラルネットワークアーキテクチャを設計、訓練、比較するために使用され、連続した空間上でロボットの加速と操舵コマンドを予測する。
最後に,ロボットの遠隔操作とニューラルネットワークの性能,および咬合や低照度環境下でのシステムの実現性について実験を行った。
関連論文リスト
- PathFinder: Attention-Driven Dynamic Non-Line-of-Sight Tracking with a Mobile Robot [3.387892563308912]
注目型ニューラルネットワークを用いてLOS(Line-of-sight)ビデオにおける動的逐次フレームのシーケンスを処理する新しい手法を提案する。
我々は,映像撮影のためのドローンによる現場撮影のアプローチを検証し,ダイナミックキャプチャ環境での低コストなNLOSイメージングを実証した。
論文 参考訳(メタデータ) (2024-04-07T17:31:53Z) - Neuromorphic Synergy for Video Binarization [54.195375576583864]
バイモーダルオブジェクトは視覚システムによって容易に認識できる情報を埋め込む視覚形式として機能する。
ニューロモルフィックカメラは、動きのぼかしを緩和する新しい機能を提供するが、最初にブルーを脱色し、画像をリアルタイムでバイナライズするのは簡単ではない。
本稿では,イベント空間と画像空間の両方で独立に推論を行うために,バイモーダル目標特性の事前知識を活用するイベントベースバイナリ再構築手法を提案する。
また、このバイナリ画像を高フレームレートバイナリビデオに伝搬する効率的な統合手法も開発している。
論文 参考訳(メタデータ) (2024-02-20T01:43:51Z) - UAVs and Neural Networks for search and rescue missions [0.0]
無人航空機(UAV)が捉えた空中画像において,車,人,火などの興味の対象を検出する方法を提案する。
これを実現するために,ニューラルネットワークを用いて教師あり学習のためのデータセットを作成する。
論文 参考訳(メタデータ) (2023-10-09T08:27:35Z) - DynaMoN: Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields [71.94156412354054]
動的ニューラルラジアンス場(DynaMoN)の高速かつロバストなカメラ位置推定法を提案する。
DynaMoNは、初期のカメラポーズ推定と高速で正確なノベルビュー合成のための静的集光線サンプリングのために動的コンテンツを処理している。
我々は,TUM RGB-DデータセットとBONN RGB-D Dynamicデータセットの2つの実世界の動的データセットに対するアプローチを広く評価した。
論文 参考訳(メタデータ) (2023-09-16T08:46:59Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
本稿では,最適な着陸軌道からイベントベースの視覚データセットを生成する手法を提案する。
我々は,惑星と小惑星の自然シーン生成ユーティリティを用いて,月面のフォトリアリスティックな画像のシーケンスを構築した。
パイプラインは500トラジェクトリのデータセットを構築することで,表面特徴の現実的なイベントベース表現を生成することができることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:14:20Z) - Neural Architectural Nonlinear Pre-Processing for mmWave Radar-based
Human Gesture Perception [10.826849062116748]
本稿では,U-NetとEfficientNetという2つのディープラーニングモデルを用いて手の動きを検出し,ミリ波レーダ画像のノイズを除去する。
第1深層学習モデルステージに入る前に、画像の復号化を行うための新しい前処理手法により、分類の精度が向上する。
論文 参考訳(メタデータ) (2022-11-07T12:42:13Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - Egocentric Human Trajectory Forecasting with a Wearable Camera and
Multi-Modal Fusion [24.149925005674145]
混雑した空間における自我中心型カメラ装着者(自我者)の軌道予測の問題に対処する。
異なるカメラ装着者のデータから得られた軌道予測能力は、視覚障害者のナビゲーションを支援するために転送することができる。
トランスフォーマーをベースとしたエンコーダ・デコーダニューラルネットワークモデルが,カメラ装着者の将来の軌道を予測するために,新しいカスケード型クロスアテンション機構と統合されている。
論文 参考訳(メタデータ) (2021-11-01T14:58:05Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
予備的バイナリフレーム分類を用いた物体検出のためのニューラルネットワークの最適化アルゴリズムを提案する。
周囲に6台のローリングシャッターカメラを備えた自律移動ロボットを360度視野として実験装置として使用した。
論文 参考訳(メタデータ) (2021-10-22T15:05:37Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。