論文の概要: A Scalable Chatbot Platform Leveraging Online Community Posts: A
Proof-of-Concept Study
- arxiv url: http://arxiv.org/abs/2001.03278v1
- Date: Fri, 10 Jan 2020 01:45:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 23:04:50.806631
- Title: A Scalable Chatbot Platform Leveraging Online Community Posts: A
Proof-of-Concept Study
- Title(参考訳): オンラインコミュニティポストを活用するスケーラブルなチャットボットプラットフォーム:概念実証研究
- Authors: Sihyeon Jo, Seungryong Yoo, Sangwon Im, Seung Hee Yang, Tong Zuo,
Hee-Eun Kim, SangWook Han, Seong-Woo Kim
- Abstract要約: 本研究では、擬似会話データとして利用して、処理されたオンラインコミュニティ投稿を用いたデータ駆動型チャットボットの構築の可能性を検証する。
さまざまな目的のためのチャットボットは、コミュニティポストの共通構造を利用したパイプラインを通じて、広範囲に構築できる、と我々は主張する。
- 参考スコア(独自算出の注目度): 4.623392924486831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of natural language processing algorithms and the explosive
growth of conversational data are encouraging researches on the human-computer
conversation. Still, getting qualified conversational data on a large scale is
difficult and expensive. In this paper, we verify the feasibility of
constructing a data-driven chatbot with processed online community posts by
using them as pseudo-conversational data. We argue that chatbots for various
purposes can be built extensively through the pipeline exploiting the common
structure of community posts. Our experiment demonstrates that chatbots created
along the pipeline can yield the proper responses.
- Abstract(参考訳): 自然言語処理アルゴリズムの開発と会話データの爆発的成長は、人間とコンピュータの会話の研究を奨励している。
それでも、大規模な会話データの取得は困難で費用がかかる。
本稿では,データ駆動型チャットボット構築の実現可能性について,擬似会話データとして利用することによって検証する。
さまざまな目的のためのチャットボットは、コミュニティポストの共通構造を利用したパイプラインを通じて、広範囲に構築できると我々は主張する。
我々の実験は、パイプラインに沿って生成されたチャットボットが適切な応答を得られることを示した。
関連論文リスト
- Computational Argumentation-based Chatbots: a Survey [0.4024850952459757]
本調査は,このような議論に基づくボットに関する論文をレビューするために,文献を精査する。
このアプローチの欠点とメリットについて結論を導きます。
また、Transformerベースのアーキテクチャや最先端の大規模言語モデルとの将来の開発や統合も検討している。
論文 参考訳(メタデータ) (2024-01-07T11:20:42Z) - ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large
Language Models [125.7209927536255]
チャットベースのLLMのためのツール拡張チェーン推論フレームワークChatCoTを提案する。
ChatCoTでは、チャットを通じてより自然な方法でツールを活用するために、マルチターン会話として思考の連鎖(CoT)推論をモデル化します。
提案手法は,チャットベースのLLMのマルチターン会話能力を効果的に活用し,思考連鎖とツール操作を統一的に統合する。
論文 参考訳(メタデータ) (2023-05-23T17:54:33Z) - PLACES: Prompting Language Models for Social Conversation Synthesis [103.94325597273316]
我々は、プロンプトを用いてソーシャルな会話データセットを合成するために、専門家による会話の小さなセットをコンテキスト内例として使用します。
人工会話の徹底的な評価を,人間による会話と比較して行った。
論文 参考訳(メタデータ) (2023-02-07T05:48:16Z) - Leveraging Large Language Models to Power Chatbots for Collecting User
Self-Reported Data [15.808841433843742]
大きな言語モデル(LLM)は、自然言語のプロンプトを受け入れてチャットボットを構築する新しい方法を提供する。
我々は,チャットボットが自然に会話し,データを確実に収集する上で,プロンプトの設計要因について検討する。
論文 参考訳(メタデータ) (2023-01-14T07:29:36Z) - Knowledge-Grounded Conversational Data Augmentation with Generative
Conversational Networks [76.11480953550013]
生成会話ネットワークを用いて会話データを自動的に生成する。
我々は、Topical Chatデータセット上で、知識のない会話に対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-07-22T22:37:14Z) - Training Conversational Agents with Generative Conversational Networks [74.9941330874663]
我々は、生成会話ネットワークを使用して、自動的にデータを生成し、社会的会話エージェントを訓練する。
自動メトリクスと人的評価器を用いてTopicalChatのアプローチを評価し、10%のシードデータで100%のデータを使用するベースラインに近いパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-15T21:46:39Z) - Addressing Inquiries about History: An Efficient and Practical Framework
for Evaluating Open-domain Chatbot Consistency [28.255324166852535]
整合性評価のためのAIH(Addressing Inquiries about History)フレームワークを提案する。
会話の段階では、AIHは対話履歴に関する適切な質問に対処し、チャットボットに歴史的な事実や意見を再宣言する。
矛盾認識段階では、人間の判断または自然言語推論(NLI)モデルを用いて、質問に対する回答が歴史と矛盾しているかどうかを認識することができる。
論文 参考訳(メタデータ) (2021-06-04T03:04:13Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z) - Conversations with Search Engines: SERP-based Conversational Response
Generation [77.1381159789032]
我々は、検索エンジンと対話するためのパイプラインを開発するために、適切なデータセット、検索・アズ・ア・会話(SaaC)データセットを作成します。
また、このデータセットを用いて、検索エンジンと対話するための最先端パイプライン(Conversations with Search Engines (CaSE))も開発しています。
CaSEは、サポートされたトークン識別モジュールとプリア・アウェア・ポインタージェネレータを導入することで最先端を向上する。
論文 参考訳(メタデータ) (2020-04-29T13:07:53Z) - If I Hear You Correctly: Building and Evaluating Interview Chatbots with
Active Listening Skills [4.395837214164745]
オープンエンドの質問に対して、ユーザの自由テキスト応答を処理できる効果的なインタビューチャットボットを構築するのは難しい。
我々は,公開可能な実用的なAI技術を用いて,効果的なインタビューチャットボットの構築の実現可能性と有効性について検討している。
論文 参考訳(メタデータ) (2020-02-05T16:52:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。