論文の概要: Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach
- arxiv url: http://arxiv.org/abs/2001.03952v1
- Date: Sun, 12 Jan 2020 15:54:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 04:42:12.938017
- Title: Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach
- Title(参考訳): 機械学習を用いたアップリンク無線通信におけるチャネル割り当て
- Authors: Guangyu Jia and Zhaohui Yang and Hak-Keung Lam and Jianfeng Shi and
Mohammad Shikh-Bahaei
- Abstract要約: 本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
- 参考スコア(独自算出の注目度): 54.012791474906514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This letter investigates a channel assignment problem in uplink wireless
communication systems. Our goal is to maximize the sum rate of all users
subject to integer channel assignment constraints. A convex optimization based
algorithm is provided to obtain the optimal channel assignment, where the
closed-form solution is obtained in each step. Due to high computational
complexity in the convex optimization based algorithm, machine learning
approaches are employed to obtain computational efficient solutions. More
specifically, the data are generated by using convex optimization based
algorithm and the original problem is converted to a regression problem which
is addressed by the integration of convolutional neural networks (CNNs),
feed-forward neural networks (FNNs), random forest and gated recurrent unit
networks (GRUs). The results demonstrate that the machine learning method
largely reduces the computation time with slightly compromising of prediction
accuracy.
- Abstract(参考訳): この手紙は、アップリンク無線通信システムにおけるチャネル割り当て問題を調査する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
凸最適化に基づくアルゴリズムが提供され、各ステップで閉形式解が得られる最適なチャネル割り当てが得られる。
凸最適化に基づくアルゴリズムでは計算の複雑さが高いため、機械学習手法を用いて計算効率のよい解を求める。
具体的には、凸最適化に基づくアルゴリズムを用いてデータを生成し、元の問題を、畳み込みニューラルネットワーク(CNN)、フィードフォワードニューラルネットワーク(FNN)、ランダムフォレスト(ランダムフォレスト)、ゲートリカレントユニットネットワーク(GRU)の統合によって対処する回帰問題に変換する。
その結果,機械学習手法は予測精度をわずかに向上させて計算時間を大幅に短縮することを示した。
関連論文リスト
- Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
本稿では,アグリゲーションエラーを最小限に抑え,選択したデバイス数を最大化する目的で,共同装置の選択とアグリゲーションビームフォーミング設計について検討する。
コスト効率のよい方法でこの問題に取り組むために,ランダムな集合ビームフォーミング方式を提案する。
また, 得られた集計誤差と, デバイス数が大きい場合に選択したデバイス数についても解析を行った。
論文 参考訳(メタデータ) (2024-02-20T23:59:45Z) - Composite federated learning with heterogeneous data [11.40641907024708]
本稿では,複合フェデレート学習(FL)問題を解くための新しいアルゴリズムを提案する。
このアルゴリズムは、近似演算子と通信を戦略的に分離することで非滑らかな正規化を管理し、データ類似性に関する仮定なしにクライアントのドリフトに対処する。
提案アルゴリズムは最適解の近傍に線形に収束し,数値実験における最先端手法よりもアルゴリズムの優位性を示す。
論文 参考訳(メタデータ) (2023-09-04T20:22:57Z) - Composite Optimization Algorithms for Sigmoid Networks [3.160070867400839]
線形化近位アルゴリズムと乗算器の交互方向に基づく合成最適化アルゴリズムを提案する。
フランク関数のフィッティングに関する数値実験により、提案アルゴリズムは十分堅牢に機能することを示した。
論文 参考訳(メタデータ) (2023-03-01T15:30:29Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Deep-Learning Based Linear Precoding for MIMO Channels with
Finite-Alphabet Signaling [0.5076419064097732]
本稿では,Multiple-Input Multi-output (MIMO)通信チャネルにおける線形プリコーディングの問題について検討する。
既存の解は通常、星座に制約された相互情報のコストのかかる計算のために計算の複雑さに悩まされる。
ディープラーニングに基づくデータ駆動型アプローチが,この問題に対処するために提案されている。
論文 参考訳(メタデータ) (2021-11-05T13:48:45Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
ヘテロジニアスデータによる不均一な統計的課題を解決するために, 分散されたニュートン型ニュートン型トレーニングスキームであるFedOVAを提案する。
FedOVAはマルチクラス分類問題をより単純なバイナリ分類問題に分解し、アンサンブル学習を用いてそれぞれの出力を結合する。
論文 参考訳(メタデータ) (2021-10-14T17:35:24Z) - Fast Convergence Algorithm for Analog Federated Learning [30.399830943617772]
無線チャネル上での効率的なアナログフェデレーション学習のためのAirCompベースのFedSplitアルゴリズムを提案する。
提案アルゴリズムは, 目的関数が強く凸かつ滑らかであるという仮定の下で, 最適解に線形収束することを示す。
我々のアルゴリズムは、他のベンチマークFLアルゴリズムと比較して、より高速な収束を伴う不条件問題に対して、より堅牢であることが理論的および実験的に検証されている。
論文 参考訳(メタデータ) (2020-10-30T10:59:49Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。