Relational State-Space Model for Stochastic Multi-Object Systems
- URL: http://arxiv.org/abs/2001.04050v1
- Date: Mon, 13 Jan 2020 03:45:21 GMT
- Title: Relational State-Space Model for Stochastic Multi-Object Systems
- Authors: Fan Yang, Ling Chen, Fan Zhou, Yusong Gao, Wei Cao
- Abstract summary: This paper introduces the relational state-space model (R-SSM), a sequential hierarchical latent variable model.
R-SSM makes use of graph neural networks (GNNs) to simulate the joint state transitions of multiple correlated objects.
The utility of R-SSM is empirically evaluated on synthetic and real time-series datasets.
- Score: 24.234120525358456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world dynamical systems often consist of multiple stochastic subsystems
that interact with each other. Modeling and forecasting the behavior of such
dynamics are generally not easy, due to the inherent hardness in understanding
the complicated interactions and evolutions of their constituents. This paper
introduces the relational state-space model (R-SSM), a sequential hierarchical
latent variable model that makes use of graph neural networks (GNNs) to
simulate the joint state transitions of multiple correlated objects. By letting
GNNs cooperate with SSM, R-SSM provides a flexible way to incorporate
relational information into the modeling of multi-object dynamics. We further
suggest augmenting the model with normalizing flows instantiated for
vertex-indexed random variables and propose two auxiliary contrastive
objectives to facilitate the learning. The utility of R-SSM is empirically
evaluated on synthetic and real time-series datasets.
Related papers
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Hidden Parameter Recurrent State Space Models For Changing Dynamics
Scenarios [18.08665164701404]
Recurrent State-space models assume that the dynamics are fixed and unchanging, which is rarely the case in real-world scenarios.
We introduce the Hidden Recurrent State Space Models (HiP- RSSMs), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors.
We show that HiP- RSSMs outperforms RSSMs and competing multi-task models on several challenging robotic benchmarks both on real-world systems and simulations.
arXiv Detail & Related papers (2022-06-29T14:54:49Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
We will explore the possibility of learning a discrete-event simulation representation of complex system dynamics.
Our results show that the algorithm can data-efficiently capture complex network dynamics in several fields with meaningful events.
arXiv Detail & Related papers (2022-05-04T21:33:56Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - MTHetGNN: A Heterogeneous Graph Embedding Framework for Multivariate
Time Series Forecasting [4.8274015390665195]
We propose a novel end-to-end deep learning model, termed Multivariate Time Series Forecasting via Heterogeneous Graph Neural Networks (MTHetGNN)
To characterize complex relations among variables, a relation embedding module is designed in MTHetGNN, where each variable is regarded as a graph node.
A temporal embedding module is introduced for time series features extraction, where involving convolutional neural network (CNN) filters with different perception scales.
arXiv Detail & Related papers (2020-08-19T18:21:22Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.