Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
- URL: http://arxiv.org/abs/2205.11894v1
- Date: Tue, 24 May 2022 08:36:25 GMT
- Title: Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
- Authors: \c{C}a\u{g}atay Y{\i}ld{\i}z, Melih Kandemir, Barbara Rakitsch
- Abstract summary: We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
- Score: 13.436770170612295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study for the first time uncertainty-aware modeling of continuous-time
dynamics of interacting objects. We introduce a new model that decomposes
independent dynamics of single objects accurately from their interactions. By
employing latent Gaussian process ordinary differential equations, our model
infers both independent dynamics and their interactions with reliable
uncertainty estimates. In our formulation, each object is represented as a
graph node and interactions are modeled by accumulating the messages coming
from neighboring objects. We show that efficient inference of such a complex
network of variables is possible with modern variational sparse Gaussian
process inference techniques. We empirically demonstrate that our model
improves the reliability of long-term predictions over neural network based
alternatives and it successfully handles missing dynamic or static information.
Furthermore, we observe that only our model can successfully encapsulate
independent dynamics and interaction information in distinct functions and show
the benefit from this disentanglement in extrapolation scenarios.
Related papers
- Identifiable Representation and Model Learning for Latent Dynamic Systems [0.0]
We study the problem of identifiable representation and model learning for latent dynamic systems.
We prove that, for linear or affine nonlinear latent dynamic systems, it is possible to identify the representations up to scaling and determine the models up to some simple transformations.
arXiv Detail & Related papers (2024-10-23T13:55:42Z) - Neural Persistence Dynamics [8.197801260302642]
We consider the problem of learning the dynamics in the topology of time-evolving point clouds.
Our proposed model -- staticitneural persistence dynamics -- substantially outperforms the state-of-the-art across a diverse set of parameter regression tasks.
arXiv Detail & Related papers (2024-05-24T17:20:18Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
We propose PolyODE, a formulation that enforces long-range memory and preserves a global representation of the underlying dynamical system.
Our construction is backed by favourable theoretical guarantees and we demonstrate that it outperforms previous works in the reconstruction of past and future data.
arXiv Detail & Related papers (2023-03-03T10:49:09Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.