Natural Image Matting via Guided Contextual Attention
- URL: http://arxiv.org/abs/2001.04069v1
- Date: Mon, 13 Jan 2020 05:59:17 GMT
- Title: Natural Image Matting via Guided Contextual Attention
- Authors: Yaoyi Li, Hongtao Lu
- Abstract summary: We develop a novel end-to-end approach for natural image matting with a guided contextual attention module.
The proposed method can mimic information flow of affinity-based methods and utilize rich features learned by deep neural networks simultaneously.
Experiment results on Composition-1k testing set and alphamatting.com benchmark dataset demonstrate that our method outperforms state-of-the-art approaches in natural image matting.
- Score: 18.034160025888056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last few years, deep learning based approaches have achieved
outstanding improvements in natural image matting. Many of these methods can
generate visually plausible alpha estimations, but typically yield blurry
structures or textures in the semitransparent area. This is due to the local
ambiguity of transparent objects. One possible solution is to leverage the
far-surrounding information to estimate the local opacity. Traditional
affinity-based methods often suffer from the high computational complexity,
which are not suitable for high resolution alpha estimation. Inspired by
affinity-based method and the successes of contextual attention in inpainting,
we develop a novel end-to-end approach for natural image matting with a guided
contextual attention module, which is specifically designed for image matting.
Guided contextual attention module directly propagates high-level opacity
information globally based on the learned low-level affinity. The proposed
method can mimic information flow of affinity-based methods and utilize rich
features learned by deep neural networks simultaneously. Experiment results on
Composition-1k testing set and alphamatting.com benchmark dataset demonstrate
that our method outperforms state-of-the-art approaches in natural image
matting. Code and models are available at
https://github.com/Yaoyi-Li/GCA-Matting.
Related papers
- DiffusionMat: Alpha Matting as Sequential Refinement Learning [87.76572845943929]
DiffusionMat is an image matting framework that employs a diffusion model for the transition from coarse to refined alpha mattes.
A correction module adjusts the output at each denoising step, ensuring that the final result is consistent with the input image's structures.
We evaluate our model across several image matting benchmarks, and the results indicate that DiffusionMat consistently outperforms existing methods.
arXiv Detail & Related papers (2023-11-22T17:16:44Z) - Learning Graph Regularisation for Guided Super-Resolution [77.7568596501908]
We introduce a novel formulation for guided super-resolution.
Its core is a differentiable optimisation layer that operates on a learned affinity graph.
We extensively evaluate our method on several datasets, and consistently outperform recent baselines in terms of quantitative reconstruction errors.
arXiv Detail & Related papers (2022-03-27T13:12:18Z) - ViCE: Self-Supervised Visual Concept Embeddings as Contextual and Pixel
Appearance Invariant Semantic Representations [77.3590853897664]
This work presents a self-supervised method to learn dense semantically rich visual embeddings for images inspired by methods for learning word embeddings in NLP.
arXiv Detail & Related papers (2021-11-24T12:27:30Z) - Long-Range Feature Propagating for Natural Image Matting [93.20589403997505]
Natural image matting estimates alpha values of unknown regions in the trimap.
Recently, deep learning based methods propagate the alpha values from the known regions to unknown regions according to the similarity between them.
We propose Long-Range Feature Propagating Network (LFPNet), which learns the long-range context features outside the reception fields for alpha matte estimation.
arXiv Detail & Related papers (2021-09-25T01:17:17Z) - Smart Scribbles for Image Mating [90.18035889903909]
We propose an interactive framework, referred to as smart scribbles, to guide users to draw few scribbles on the input images.
It infers the most informative regions of an image for drawing scribbles to indicate different categories.
It then spreads these scribbles to the rest of the image via our well-designed two-phase propagation.
arXiv Detail & Related papers (2021-03-31T13:30:49Z) - Foreground color prediction through inverse compositing [19.0945877082419]
In natural image matting, the goal is to estimate the opacity of the foreground object in the image.
In recent years, advances in deep learning have led to many natural image matting algorithms that have achieved outstanding performance in a fully automatic manner.
We propose a novel recurrent neural network that can be used as a post-processing method to recover the foreground and background colors of an image.
arXiv Detail & Related papers (2021-03-24T18:10:15Z) - High-Resolution Deep Image Matting [39.72708676319803]
HDMatt is a first deep learning based image matting approach for high-resolution inputs.
Our proposed method sets new state-of-the-art performance on Adobe Image Matting and AlphaMatting benchmarks.
arXiv Detail & Related papers (2020-09-14T17:53:15Z) - Hierarchical Opacity Propagation for Image Matting [15.265494938937737]
A novel structure for more direct alpha matte propagation between pixels is in demand.
HOP matting is capable of outperforming state-of-the-art matting methods.
arXiv Detail & Related papers (2020-04-07T10:39:55Z) - AlphaNet: An Attention Guided Deep Network for Automatic Image Matting [0.0]
We propose an end to end solution for image matting i.e. high-precision extraction of foreground objects from natural images.
We propose a method that assimilates semantic segmentation and deep image matting processes into a single network to generate semantic mattes.
We also construct a fashion e-commerce focused dataset with high-quality alpha mattes to facilitate the training and evaluation for image matting.
arXiv Detail & Related papers (2020-03-07T17:25:21Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.