Long-Range Feature Propagating for Natural Image Matting
- URL: http://arxiv.org/abs/2109.12252v1
- Date: Sat, 25 Sep 2021 01:17:17 GMT
- Title: Long-Range Feature Propagating for Natural Image Matting
- Authors: Qinglin Liu, Haozhe Xie, Shengping Zhang, Bineng Zhong and Rongrong Ji
- Abstract summary: Natural image matting estimates alpha values of unknown regions in the trimap.
Recently, deep learning based methods propagate the alpha values from the known regions to unknown regions according to the similarity between them.
We propose Long-Range Feature Propagating Network (LFPNet), which learns the long-range context features outside the reception fields for alpha matte estimation.
- Score: 93.20589403997505
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Natural image matting estimates the alpha values of unknown regions in the
trimap. Recently, deep learning based methods propagate the alpha values from
the known regions to unknown regions according to the similarity between them.
However, we find that more than 50\% pixels in the unknown regions cannot be
correlated to pixels in known regions due to the limitation of small effective
reception fields of common convolutional neural networks, which leads to
inaccurate estimation when the pixels in the unknown regions cannot be inferred
only with pixels in the reception fields. To solve this problem, we propose
Long-Range Feature Propagating Network (LFPNet), which learns the long-range
context features outside the reception fields for alpha matte estimation.
Specifically, we first design the propagating module which extracts the context
features from the downsampled image. Then, we present Center-Surround Pyramid
Pooling (CSPP) that explicitly propagates the context features from the
surrounding context image patch to the inner center image patch. Finally, we
use the matting module which takes the image, trimap and context features to
estimate the alpha matte. Experimental results demonstrate that the proposed
method performs favorably against the state-of-the-art methods on the
AlphaMatting and Adobe Image Matting datasets.
Related papers
- DiffusionMat: Alpha Matting as Sequential Refinement Learning [87.76572845943929]
DiffusionMat is an image matting framework that employs a diffusion model for the transition from coarse to refined alpha mattes.
A correction module adjusts the output at each denoising step, ensuring that the final result is consistent with the input image's structures.
We evaluate our model across several image matting benchmarks, and the results indicate that DiffusionMat consistently outperforms existing methods.
arXiv Detail & Related papers (2023-11-22T17:16:44Z) - Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering [84.37776381343662]
Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information.
We propose mip voxel grids (Mip-VoG), an explicit multiscale representation for real-time anti-aliasing rendering.
Our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously.
arXiv Detail & Related papers (2023-04-20T04:05:22Z) - Alpha Matte Generation from Single Input for Portrait Matting [79.62140902232628]
The goal is to predict an alpha matte that identifies the effect of each pixel on the foreground subject.
Traditional approaches and most of the existing works utilized an additional input, e.g., trimap, background image, to predict alpha matte.
We introduce an additional input-free approach to perform portrait matting using Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2021-06-06T18:53:42Z) - Foreground color prediction through inverse compositing [19.0945877082419]
In natural image matting, the goal is to estimate the opacity of the foreground object in the image.
In recent years, advances in deep learning have led to many natural image matting algorithms that have achieved outstanding performance in a fully automatic manner.
We propose a novel recurrent neural network that can be used as a post-processing method to recover the foreground and background colors of an image.
arXiv Detail & Related papers (2021-03-24T18:10:15Z) - Duplex Contextual Relation Network for Polyp Segmentation [19.509290186267396]
We propose Duplex Contextual Relation Network (DCRNet) to capture both within-image and cross-image contextual relations.
We evaluate the proposed method on the EndoScene, Kvasir-SEG and the recently released large-scale PICCOLO dataset.
arXiv Detail & Related papers (2021-03-11T15:19:54Z) - Scale Normalized Image Pyramids with AutoFocus for Object Detection [75.71320993452372]
A scale normalized image pyramid (SNIP) is generated that, like human vision, only attends to objects within a fixed size range at different scales.
We propose an efficient spatial sub-sampling scheme which only operates on fixed-size sub-regions likely to contain objects.
The resulting algorithm is referred to as AutoFocus and results in a 2.5-5 times speed-up during inference when used with SNIP.
arXiv Detail & Related papers (2021-02-10T18:57:53Z) - Fast Multi-Level Foreground Estimation [0.4588028371034407]
The resulting alpha matte describes pixel-wise to what amount foreground and background colors contribute to the color of the composite image.
While most methods in literature focus on estimating the alpha matte, the process of estimating the foreground colors given the input image and its alpha matte is often neglected.
We propose a novel method for foreground estimation given the alpha matte.
arXiv Detail & Related papers (2020-06-26T13:16:13Z) - Hierarchical Opacity Propagation for Image Matting [15.265494938937737]
A novel structure for more direct alpha matte propagation between pixels is in demand.
HOP matting is capable of outperforming state-of-the-art matting methods.
arXiv Detail & Related papers (2020-04-07T10:39:55Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z) - Natural Image Matting via Guided Contextual Attention [18.034160025888056]
We develop a novel end-to-end approach for natural image matting with a guided contextual attention module.
The proposed method can mimic information flow of affinity-based methods and utilize rich features learned by deep neural networks simultaneously.
Experiment results on Composition-1k testing set and alphamatting.com benchmark dataset demonstrate that our method outperforms state-of-the-art approaches in natural image matting.
arXiv Detail & Related papers (2020-01-13T05:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.